新的 48V 技术已在电动机系统中标准化,以减少电动汽车 (EV) 的排放。它取代了传统的 12V 系统,提供额外的高电压电池来满足增加的功率需求。除了动力系统的电动机和电池组外,48V 系统还具有其他直接操作的优势,例如加热和空调应用。该技术提高了功率能力,可用于启动时更重的负载,例如空调和催化转化器。这进而推动了适合 48V 配置的本地 DC-DC 转换器和无源元件(包括电容器和电感器)的进步。这样的发展可能导致该技术在全电池电动系统中得到广泛采用,从而有助于将电池组的 400 或 800 V 输出转换为 48 V 以分配到整个车辆。
目的:从最新的医学文献的角度来分析颅内压的非侵入性监测技术。书目审查:持续的颅内高血压(HIC)的正确管理与发病率和死亡率的显着降低有关。在这个意义上,颅内压监测(PIC)至关重要。从历史上看,PIC监测的金标准方法涉及颅内导管的手术安装。此方法可以产生并发症,并需要专业的专业人员安装。鉴于此,与可用的HIC和可用技术设备的生理学更好地了解了这一点,因此将非不可创作的PIC监测方法引入了临床实践中。这项工作分析了当今目前使用的五种非无创的监测技术:计算机断层扫描(TC),Transcranian Doppler(DTC),光神经供应直径(DBNO),成员和脑4CARE。最终考虑:仰卧和Brain4Care在某些医院环境中已经成为有希望的方法,尤其是在数据可靠性和临床实用性方面。多中心和较高样本研究仍然是定义这些方法的适用性的必要条件。
一种简单的无压两步烧结法解决了生产致密超细晶粒 (UFG) 钨的难题。该方法可提供均匀的微观结构,理论密度约为 99%,晶粒尺寸约为 700 nm,这是文献中报道的最佳纯钨烧结方法之一。得益于更细腻、更均匀的微观结构,两步烧结样品在弯曲强度和硬度方面表现出更好的机械性能。在验证了抛物线晶粒生长动力学的同时,在 1400°C 时观察到标称晶界迁移率的转变,高于此温度时有效活化焓约为 6.1 eV,低于此温度时晶界运动迅速冻结,活化焓异常大,约为 12.9 eV。活化参数相对于温度的这种高度非线性行为表明活化熵和可能的集体行为在晶粒生长中发挥了作用。我们相信,所报道的两步烧结方法也适用于其他难熔金属和合金,并且可以推广到使用机器学习的多步或连续冷却烧结设计。© 2020 Acta Materialia Inc. 由 Elsevier Ltd. 出版。保留所有权利。
满足严格的要求,氢容器的压力阻力是由增强纤维支配的,但是树脂矩阵在提供环境外观保护(热,化学,撞击)以及疲劳/压力循环的耐药性方面起着关键作用。在85°C下进行严重的压力循环测试,GTR 13标准要求,实际上,树脂系统必须具有至少115-120°C的玻璃过渡温度(TG),即使在热/潮湿条件下,也必须避免过早故障。研究表明,在断裂时具有高机械强度和高伸长的树脂系统可以更好地支持压力循环引起的尺寸变化(应变),从而防止在最大额定压力下层压板内的裂纹启动。
摘要:报道了一种采用临时键合技术制备的微型压阻式压力传感器。在SOI(Silicon-On-Insulator)晶片的器件层上形成传感膜,将传感膜与硼硅酸盐玻璃(Borofloat 33,BF33)晶片键合支撑,经硼掺杂和电极图形化后通过Cu-Cu键合剥离。将处理层减薄、刻蚀后键合到另一片BF33晶片上。最后采用化学机械抛光(CMP)减薄衬底BF33晶片,降低器件总厚度。切割后用酸溶液去除铜临时键合层,剥离传感膜。制备的压力传感器芯片面积为1600 µ m×650 µ m×104 µ m,传感膜尺寸为100 µ m×100 µ m×2 µ m。在0~180 kPa范围内获得了较高的灵敏度36 µ V / (V · kPa)。通过进一步减小宽度,所制备的微型压力传感器可以轻松安装在医疗导管中用于血压测量。
工作条件 *最高工作温度 *褶式玻璃纤维 121 ℃ *褶式 PP 82 ℃ *最大压差 *褶式玻璃纤维 120 ℃时为 2.4 bar (g) *褶式 PP 80 ℃时为 2.4 bar (g) *建议最大水流量
摘要:本文介绍了一种将超薄硅芯片嵌入机械柔性阻焊层中并通过喷墨打印实现电接触的方法。将感光阻焊层通过保形喷涂涂覆到具有菊花链布局的环氧粘合超薄芯片上。使用紫外线直接曝光的光刻技术打开接触垫。实现了直径为 90 µ m 和边长为 130 µ m 的圆形和矩形开口。喷墨打印含有纳米银和金的商用油墨,以在菊花链结构之间形成导电轨道。应用了不同数量的油墨层。通过针探测来表征轨道电阻。银油墨仅在多层和 90 µ m 开口时才显示低电阻,而金油墨在至少两层印刷层时表现出个位数 Ω 范围内的低电阻。
摘要 - 在这项研究中,提出了独立铜(CU)透明玻璃染色(TGV)的微压。开发了一种创新方法,以获得独立的cu tgvs,其中cu覆盖量被用作微压测试的底板,从而可以直接获得单个TGV的机械响应。根据机械响应,Cu TGV的平均屈服强度为123 MPa,标准偏差为7.85MPa。六个测试的TGV的屈服强度值非常吻合,表明一种可靠且可重复的测试程序。该值略低于Cu TSV的屈服应力值,但在报告的电镀铜的范围内。讨论了影响Cu TGV的机械性能的因子,包括电镀参数和微观结构变化。在本研究中证明的样品制备和微压测试方法可以轻松地用于经受各种制造和退火条件的TGV,这将使处理参数的细节调节以生成具有可取属性的CU TGV的特定属性。该测试的结果还将为预测热模型提供有价值的输入,以使可靠的玻璃插入器的发展。
1 米尼奥大学物理中心,4710-057,布拉加,葡萄牙 2 米尼奥大学 IB-S 可持续发展科学与创新研究所,4710-057,布拉加,葡萄牙 3 米尼奥大学聚合物与复合材料研究所 IPC/I3N,4800-058 吉马良斯,葡萄牙 4 BCMaterials,巴斯克材料、应用与纳米结构中心,HU 科技园,48940 Leioa,西班牙 5 IKERBASQUE,巴斯克科学基金会,48013,毕尔巴鄂,西班牙