核磁共振 (NMR) 是对原子核磁特性的光谱研究。原子核的质子和中子具有与其核自旋和电荷分布相关的磁场。共振是一种能量耦合,当单个原子核被置于强外部磁场中时,它会选择性地吸收并随后释放这些原子核及其周围环境所特有的能量。自 20 世纪 40 年代以来,NMR 信号的检测和分析已作为化学和生物化学研究中的分析工具得到了广泛的研究。NMR 不是一种成像技术,而是一种提供有关放置在小体积、高场强磁性装置中的样本的光谱数据的方法。在 20 世纪 70 年代初,人们意识到磁场梯度可用于定位 NMR 信号并生成显示质子磁特性的图像,反映临床相关信息,再加上技术进步和“体型”磁体的发展。随着 20 世纪 80 年代中期临床成像应用的增多,“核”含义被抛弃,磁共振成像 (MRI) 及其大量相关缩略词开始被医学界普遍接受。随着磁场强度更高的磁铁以及解剖、生理和光谱研究的改进,MR 应用的临床意义不断扩大。对软组织差异的高对比敏感度以及使用非电离辐射对患者的固有安全性是 MRI 取代许多 CT 和投影射线照相方法的主要原因。随着图像质量、采集方法和设备设计的不断改进,MRI 通常是检查患者解剖和生理特性的首选方式。但它也存在缺点,包括设备和选址成本高、扫描采集复杂、成像时间相对较长、图像伪影明显、患者幽闭恐惧症以及 MR 安全问题。本章回顾了磁学的基本特性、共振概念、组织磁化和弛豫事件、图像对比度的生成以及获取图像数据的基本方法。第 13 章讨论了高级脉冲序列、图像特征/伪影的说明、MR 波谱、MR 安全性和生物效应。
反应堆物理学因其多学科性质而令人兴奋且引人入胜。探索原子核释放了原子的潜力和迷人的中性粒子——中子的作用!对原子核内能量转移的复杂现象以及孤立中子的相互作用的理解为能源生产打开了许多机会。裂变链式反应的发现对世界来说是一个伟大的尤里卡时刻,这个想法已经得到成功利用。回顾芝加哥堆的 80 年,我们已经取得了长足的进步,并成功设计和运行了几种类型的核反应堆。在世界上所有的动力反应堆中,超过 90% 是基于热中子能谱的。热反应堆的物理特性由散射介质中复杂的中子传输控制,以实现所需的中子谱。新一代反应堆通常必须满足四个主要方面,即可持续性、更好的燃料利用率、固有安全性和更好的经济性。本文旨在介绍这些新型反应堆设计中的设计挑战,其中使用先进燃料来实现上述目标,并调整中子谱以实现更高的安全性。因此,我们必须使用更新的材料并探索未知领域。本文尽量简洁,以便其他领域的读者也能理解反应堆物理学的这些特点。
每个内爆会产生许多中子:通常在原子核中与质子和伽马射线一起限制的中性颗粒。这些颗粒的庞大数量会在内爆室周围产生严重的辐射环境,并会损害许多常见类型的诊断仪器。Photek探测器中使用的真空管技术可以在这些高水平的辐射中生存,这也使它们成为空间严峻的辐射环境的宝贵技术。Photek PhotodeTector不仅可以在ICF内爆的严酷辐射环境中幸存下来,而且还在世界上最快的光检测器中。
麦吉尔大学在核物理学领域的卓越传统始于卢瑟福 1898 年至 1907 年在麦吉尔任职期间,在此期间他发现了物质的嬗变。这一卓越传统一直延续至今。如今,核物理学涵盖了现代物理学的广泛领域。传统的原子核及其反应研究仍然是现代核物理学中充满活力的一部分。然而,在 20 世纪后期,一个新的、令人兴奋的核物理学领域开始出现。这就是在极端条件下对核物质的研究。
材料的基本性质由原子核势能、电子质量和相互排斥力下的电子决定。不同材料之间的变量是离子势。计算电子性质的逻辑程序是从势到电子分布。这使得从原子、分子到固体的材料性质的实际计算成为可能。由于许多人的努力,这种方法已经蓬勃发展。这个概念类似于将人类人口分布的预测从丘陵和山谷的景观转变为从人口分布确定景观。在原子系统中,量子的怪癖允许这种切换,但决定它只是量子态断层扫描中的一个切片。作者分享了他从这个切片开发的经验,但接近用人口切换景观的强大概念。
类型:续订 标题:“强相互作用南部-戈德斯通玻色子的 3D 成像” 首席研究员:赵勇,阿贡国家实验室 联合研究员:丹尼斯·博尔韦格,布鲁克海文国家实验室 彼得·博伊尔,布鲁克海文国家实验室 伊恩·克洛伊特,阿贡国家实验室 高翔,阿贡国家实验室 斯瓦加托·穆克吉,布鲁克海文国家实验室 石琪,布鲁克海文国家实验室 张睿,阿贡国家实验室 科学学科:物理学 INCITE 分配:站点:阿贡国家实验室 机器(分配):HPE Cray EX - 英特尔百亿亿次计算刀片节点(600,000 Aurora 节点小时) 研究摘要:可见宇宙主要由质子和中子组成,它们结合在一起形成原子核,占所有可见物质质量的 99% 以上。然而,如果没有一种名为介子的强相互作用粒子,我们所知的原子核就不会存在,介子在大于质子大小的距离尺度上作为强核力的载体发挥着关键作用。实验研究加上理论上的重大进展表明,质子、中子和介子等强相互作用粒子是由夸克和胶子等基本粒子组成的,它们的相互作用可用量子色动力学 (QCD) 描述。因此,QCD 是原子核形成的原因,因此也是宇宙中几乎所有可见物质形成的原因。通过这个 INCITE 项目,研究人员正在对介子和 K 介子的 3D 结构进行格点 QCD 计算,它们是强相互作用中的南部-戈德斯通玻色子。该团队使用保持手性对称性的格点 QCD 拉格朗日量,旨在确定高动量转移时的电磁形状因子、横向动量相关 (TMD) 波函数和部分子分布函数。这些计算旨在为杰斐逊实验室 (JLab) 12 GeV 升级和未来的电子离子对撞机 (EIC) 等实验项目提供比较和预测。结果将加深对强相互作用和约束的理解,并提供介子和介子的全面 3D 成像。该团队还将利用他们的发现提取用于 TMD 演化的 Collins-Soper 内核,这是从 JLab 和 EIC 实验中对质子 TMD 进行全局分析的关键输入。
此外,量子计算机可以精确计算系统,而成熟的计算化学方法的近似会导致结果出现重大错误。使用经典量子化学特别难以模拟的系统是高度相关的电子系统,其中所谓的 Born-Oppenheimer 近似(假设原子核固定,与电子的位置无关)无效。这对于气候友好型技术的开发尤其有意义,因为高度相关的电子系统显示出有希望的应用,例如在电池中的电极材料或催化剂中。Born-Oppenheimer 近似被发现是无效的,例如在某些使用光合作用的生物系统中。因此,摆脱这种近似的必要性可以让我们更好地理解自然光合作用。
伦敦学院,高尔街,伦敦,WC1E 6BT,英国# 通讯作者:d.duffy@ucl.ac.uk 摘要 预测材料在各种辐照场景下结构变化的能力将对许多科学和技术领域产生积极影响。现有的大型原子系统建模技术(如经典分子动力学)因忽略电子自由度而受到限制,这限制了它们的应用范围,即主要与原子核相互作用的辐照事件。另一方面,从头算方法包括电子自由度,但所需的计算成本限制了它们在相对较小的系统中的应用。旨在克服其中一些限制的最新方法发展基于将原子模型与电子能量连续模型相结合的方法,其中能量通过电子停止和电子-声子耦合机制在原子核和电子之间交换。这种双温度分子动力学模型使得模拟电子激发对具有数百万甚至数亿个原子的系统的影响成为可能。它们已被用于研究金属薄膜的激光辐照、金属和半导体的快速重离子辐照以及金属的中高离子辐照。在这篇综述中,我们描述了双温度分子动力学方法及其实施所需的各种实际考虑。我们提供了该模型在适应电子激发的多种辐照场景中的应用示例。我们还描述了在模拟中包括由于电子激发而引起的原子间相互作用的改变的影响所面临的挑战以及如何克服这些挑战。关键词辐射损伤;双温度模型;分子动力学;电子效应;激光辐照;快速重离子
1. 所有恒星(包括太阳)都是由星云(由尘埃和气体组成)形成的 2. 引力使尘埃和气体盘旋在一起,形成原恒星 3. 引力能转化为热能,因此温度升高。当温度足够高时,氢原子核发生核聚变形成氦原子核,并放出大量的热和光。一颗恒星诞生了。 4. 最终氢开始耗尽。较重的元素由氦的核聚变制成。恒星从主序变成红巨星(如果是一颗小恒星)或红超巨星(如果是一颗大恒星)。表面温度下降,相对光度降低。