“LIGO/Virgo 式”网络与合作,为英国领导层提供了一条道路。第一阶段目前由 QTFP 计划和其他来源资助了约 1000 万英镑,第二阶段可以放在 Boulby 或 Daresbury(英国)的国家设施,也可能放在 CERN(法国/瑞士)。
在过渡金属氧化金属异质结构的界面处的相关性和电子重建的摘要为调整其独特的物理特性提供了新的途径。在这里,我们研究了界面非色化和垂直相分离对磁性特性的影响,以及外部上马la 0.7 SR 0.7 SR 0.3 MNO 3(LSMO)/SRTIO 3(001)氧化物氧化物异构结构的接近性诱导的磁性。我们还重新分辨了该系统报告的最近观察到的逆滞后行为,我们发现,这些行为是从超导螺线管的remanent fird中提出的,而不是从低稳态的LSMO lsmo thin-films中的抗铁磁内交换偶联。结合了原子解析的电子能损失光谱,元素特异性X射线磁性圆形二色性和界面敏感的极化X射线谐振磁磁反射性显示Mn 3 + - 增强的互化lsmo层的形成。 MNO 3,以及界面处的少量O-VACACANCES。这些结果不仅可以提高对相关氧化物界面的磁性和自旋结构的理解,而且还对实际应用有望,尤其是在性能依赖于界面自旋结构控制和旋转极化电流的设备。
摘要 我们实施了一种实验架构,其中单个 K 原子被困在光镊中,并浸入超低温的 Rb 原子槽中。在这种情况下,单个被捕获原子的运动被限制在最低量子振动能级。这实现了一个基本的、完全可控的量子杂质系统。对于 K 原子的捕获,我们使用物种选择性偶极势,这使我们能够独立操纵量子杂质和原子槽。我们专注于表征和控制两个子系统之间的相互作用。为此,我们进行了 Feshbach 光谱学,检测到几个跨维度限制引起的 Feshbach 共振,用于 KRb 物种间散射长度,这可以参数化相互作用的强度。我们将我们的数据与跨维度散射理论进行了比较,发现它们非常吻合。值得注意的是,我们还检测到了一系列源自底层自由空间 s 波相互作用的 p 波共振。我们进一步确定了当浴温以及相互作用的维数发生变化时,共振会如何表现。此外,我们能够通过精细调整产生光镊的光的波长来筛选浴中的量子杂质,这为我们提供了一种控制和最小化相互作用的新有效工具。我们的研究结果为量子杂质模型、量子信息和量子热力学的量子模拟开辟了一系列新的可能性,其中量化系统与浴之间的相互作用是一种强大但尚未得到充分利用的资源。
根据应用选择(金融、制药、物流、可再生能源),将使用优化和机器学习等技术,其中整个过程或部分过程将适应中性原子量子计算机的计算。目前,有使用中性原子进行优化和机器学习的算法。每个项目都旨在改进现有算法或提出替代算法和方法,以提高速度、所需的量子资源、步骤数或结果的准确性。
挑战:可扩展性(𝑁≤7)Babbush 等人,PRA 99 (2019);罗等人, npj Q. Inf. 5 (2019); Bentsen 等人, PRL 123 (2019); Kim 等人,PRB 101(2020); Wei 和 Sedrakyan,PRA 103 (2021); Jafferis 等人,Nature 612, 51 (2022); Kobrin 等人,arXiv:2302.07897
摘要 — 中性原子是可扩展量子计算架构的一个有前途的选择。长距离相互作用和原生多量子比特门等特性可以减少通信成本和操作次数。然而,用作量子比特的捕获原子可能会在计算过程中以及由于不利的环境因素而丢失。丢失的计算量子比特的值无法恢复,需要重新加载阵列并重新运行计算,从而大大增加了电路的运行次数。存在软件缓解策略 [1],但会慢慢耗尽电路的原始映射位置,并在整个架构中创建更分散的量子比特簇,从而降低成功的可能性。我们通过开发找到所有可到达量子比特(而不是仅相邻的硬件量子比特)的策略来提高灵活性。其次,我们将架构划分为单独的部分,并在每个部分中运行电路,不会丢失原子。如果架构足够大,这会重置电路而无需重新加载整个架构。对于使用 30% 架构的电路,这将在重新加载之前的有效射击次数增加两倍。我们还探索使用这些部分来并行执行电路,将 30 量子比特电路的总体运行时间减少 50%。这些技术有助于形成一套动态的新策略来对抗计算空间丢失的有害影响。索引术语 — 量子计算、中性原子、重新编译
图 5:(ad) 先进的扫描探针,可在空间、能量和时间上实现终极分辨率。(a) 尖端功能化(例如 CO)可提高横向分辨率。(b) STM 发光可研究原子尺度上的光与物质相互作用。(c) 带有自旋极化尖端的 ESR-STM,可探测具有 μeV 能量分辨率的自旋流形。(d) 泵浦探测 THz-STM,可探测激发光谱的时间动态。(ei) 点缺陷(蓝色球体)横向位置控制的可能概念。(e,f) 合成自组织,例如沿域边界 (e) 或使用明确定义的纳米片 (f)。(g) 使用电子(左)或离子束(右)进行原子操控。(h) 通过扫描探针尖端进行原子操控,移动表面原子/分子并将其固定/植入宿主基质中。 (i)尖端诱导的化学处理的二维材料的解吸,暴露悬空键(红色)作为掺杂剂的锚点。