Although the application of fiber-reinforced concrete (FRC) beams turns back to a few decades ago (Adhikary & Mutsuyoshi, 2006 ; Masuelli, 2013 ; Soltanzadeh et al., 2015 ), significant efforts also have been made to increase the strength and ductility of concrete in construction and building structures since sustainable infrastructure is cru- cial for economic development (Aldwaik &阿德利,2016年)。与其他纤维增强的复合结构(çelik&König,2022; Rafiei&Adeli,2017b; Shafighfard等,2021)一样,最近已证明FRC结构是拥有比正常混凝土更具特殊耐药性和强度的能力。能够预测钢纤维 - 增强混凝土(SFRC)束的结构行为是研究人员在攻击其性能时面临的众多挑战之一(Rafiei等,2017; Singh,2016; Venkateshwaran&Tan,2018)。在众多的弯曲参数中(Gribniak等,2012; Gribniak&Sokolov,2023),延展性比引起了研究人员的注意,因为它的能力反映了结构元素对弯曲载荷的反应。另一个重要的弯曲度量是弯曲载荷能力(峰值负载),该指标已通过数值模拟,实验研究和机器学习(ML)基于基于的预测技术进行了研究。一些研究人员已经对SFRC梁进行了数值和/或分析研究,以降低与实验研究相关的劳动和/或材料成本(Jeong&Jo,2021;Júnior&Parvin,2022)。tan等。Yang等。 (2020)Yang等。(2020)纵向钢筋比率和残留拉伸强度是SFRC梁柔性性能的参数研究中考虑的典型变量。使用纤维来增强拉伸强度并不比连续加固在改善混凝土束的力矩容量方面更有效,但是与普通的RC梁相比,纤维增强型会增加僵硬和强度(Mobasher等人,2015年)。(2022)进行了SFRC材料特性对弯曲性能的影响的参数分析,发现弯曲延展性受到RC梁中高体积分数的影响。对具有不同纤维纵横比,方向和梁尺寸的SFRC梁的三维(3D)模型表明,由于弯曲增强的峰值载荷增加了较高的分布纤维,因此在拉伸应力方向上定向纤维。此外,具有较低纤维增强比的较小梁显示出较高的峰值载荷(Al-Ahmed等,2022)。实验研究通常被认为是数值工作(Pereira等,2020)的组成部分,以验证它们提供的结果。
11 与其他预防性治疗方案相比,降钙素基因相关肽单克隆抗体 (CGRP mAb) 在偏头痛管理中表现出良好的效果。目前,有多项研究涉及 CGRP mAb 在偏头痛管理中的有效性和耐受性。但是,在将抗体类别之间切换作为偏头痛患者的治疗选择时,仍有许多问题尚未解答。本研究旨在探索和评估先前使用其他 CGRP mAb 治疗失败的患者对 CGRP mAb 的治疗反应。18 这是一项回顾性、现实世界的探索性研究。研究对象为 19 名被诊断为偏头痛的成年 (≥18 岁) 患者。对使用两种或更多种 GCRP mAb 治疗的患者进行了回顾性分析。数据来自一个研究中心,53 名偏头痛患者由于最初处方的 CGRP mAb 疗效不佳而在三种 CGRP mAb 类型(Eptinezumab、Erenumab 和 Glacanezumb)之间切换。通过患者日记和临床记录中记录的 MMD 来评估在 CGRP mAb 类型之间切换的疗效。使用非参数分析比较每种处方药前六个月的疗效。疗效分析表明,两个类别切换队列(CGRP/R 到 CGRP/L 和 CGRP/L 到 CGRP/R)均有所改善。然而,处方切换疗效最显著的改善发生在在不同 CGRP/L 类药物之间切换的患者中。慢性偏头痛和发作性偏头痛患者的 MMD 均有所改善,但慢性偏头痛患者在横向 30 转换后表现出更高的疗效反应性,CGRP 类别之间转换的安全性得到了很好的观察,因为转换前出现的任何不良事件 31 都不会导致转换后停止治疗。 32 这项研究的结果表明,在不同类别的 CGRP mAb 之间转换是一种 33 潜在的安全且临床可行的做法,可能对那些在目前的 CGRP mAb 上出现副作用或反应不佳的患者有一定的应用价值。对于开始使用配体靶向 CGRP mAb 治疗并出现副作用或缺乏有意义的 36 疗效的患者来说尤其如此,因为配体-配体队列似乎显示出最好的结果。需要更大规模的队列研究和 37 更长时间的随访来验证我们的发现。 38 39 40 41 42
使用不同靶到基片距离的化学计量氮化硅靶,通过射频磁控溅射在单面 P 型抛光掺硼硅晶片基片上沉积氮化硅薄膜。改变靶到基片的间距(非常规参数)以优化表面粗糙度和晶粒尺寸。这种优化提供了均匀、密集的氮化硅薄膜的正态分布,没有表面裂纹。采用原子力显微镜探索氮化硅薄膜的精确表面粗糙度参数。所有样品的表面粗糙度和晶粒分析都表现出直接关系,并与靶到基片的间距呈反比关系。通过以下参数分析了 Si3N4 的表面形貌:平均粗糙度、均方根粗糙度、最大峰谷高度、十点平均粗糙度、线的偏度和峰度。氮化硅薄膜的表面粗糙度在基于氮化硅波导的生物传感器制造中具有重要意义。 (2022 年 8 月 4 日收到;2023 年 4 月 3 日接受) 关键词:原子力显微镜、射频磁控溅射、氮化硅、靶材到基板间距、薄膜 1. 简介 氮化硅具有卓越的光学、化学和机械性能,是微电子学中用作电介质和钝化层 [1] 以及微机电系统 (MEMS) 中结构材料最广泛的材料 [2, 3]。氮化硅薄膜由于其在可见光和近红外 (NIR) 区域的高折射率和透明度,在光电子应用中也发挥着至关重要的作用 [4, 5]。氮化硅薄膜在光电子领域的主要应用是基于光波导的生物传感器作为平面光波导 [6-8]。平面光波导是一种三层结构,其中通常称为芯的高折射率薄膜夹在两个低折射率膜(称为下包层和上包层)之间。平面波导内部的光传播基于全内反射原理。据报道,光波导中芯体表面的粗糙度是造成波导边界处光传播损耗的原因 [10, 11]。这是由于界面处的反射和折射现象而不是全内反射造成的。芯体的粗糙表面可以将光散射到不同方向。芯体和包层之间的折射率差 ∆n 越大,光在芯体中的限制就越大。因此,由于氮化硅的折射率约为 2,而二氧化硅的折射率约为 1,因此二氧化硅/氮化硅/二氧化硅的特定结构是平面光波导的合适候选材料。46 作为上下包层,折射率差 ∆n ~ 0.5[9]。Si 3 N 4 薄膜通过低压化学气相沉积、热蒸发、等离子体增强化学气相沉积和磁控溅射系统制备[12-16]。然而,磁控溅射技术由于无毒气体、低温沉积、易于调节沉积速率和沉积系统简单而比 PECVD 技术具有相当大的优势[17]。薄膜的常规参数
前言 用于技术和商业通信的无线技术已经存在一个多世纪,并广泛应用于许多流行的应用。无线技术在电力系统中的使用也并非新鲜事。它在系统监控、计量和数据收集方面的应用可以追溯到几十年前。然而,现在预见到的智能电网的先进应用和广泛使用需要高度可靠、安全、设计良好和管理的通信网络。将无线技术应用于任何给定应用集的决定都是一个局部决定,必须考虑几个重要因素,包括技术和业务考虑。智能电网应用要求必须以足够的规范来定义,以定量定义通信流量负载、性能水平和服务质量。应用要求必须与系统生命周期的一整套管理和安全要求相结合。然后可以使用这些要求来评估各种无线技术是否适合满足特定应用环境的要求。本报告包含关键工具和方法,可帮助智能电网系统设计人员就现有和新兴无线技术做出明智的决策。已汇总了一组初始量化要求,用于高级计量基础设施 (AMI) 和初始配电自动化 (DA) 通信。这两个领域因其范围和规模而面临技术挑战。这些系统将涵盖从城市到农村的各种地理区域和运营环境以及人口密度。这里介绍的无线技术涵盖不同的技术,这些技术在功能、成本和满足先进电力系统应用的不同要求方面各不相同。系统设计人员可以通过展示一组无线功能和特性来获得进一步的帮助,这些功能和特性以矩阵形式呈现,这些功能和特性针对现有和新兴的基于标准的无线技术。本报告提供了功能的详细信息,以便设计人员初步筛选可用的无线技术选项。为了进一步协助决策,报告以模型的形式提供了一组工具,可用于对各种无线技术进行参数分析。虽然无线技术对未来充满希望,但它并非没有局限性。此外,无线技术还在不断发展。本报告提供了一套初步指导方针,旨在帮助智能电网设计人员和开发人员独立评估候选无线技术。优先行动计划 2 (PAP02) 从根本上贯穿了智能电网的整个领域。无线是智能电网的几种通信选项之一,必须以技术严谨的态度对待,以确保通信系统投资能够很好地满足智能电网当前和未来的需求。无线技术的范围和规模将代表一项重大的资本投资。此外,智能电网将支持各种各样的应用
摘要全球中风是死亡的第二大主要原因,也是死亡和残疾的第三大主要原因。中风估计的全球经济负担每年超过8.91亿美元。在三十年(1990- 2019年)中,发病率增加了70%,死亡人数增长了43%,患病率增加了102%,达利斯(Dalys)增加了143%。超过1亿人受到中风影响,大约76%是全球记录的缺血性中风(IS)。在上下文上,缺血性中风进入了包括研究人员,医疗保健行业,经济学家和政策制定者在内的多专业团体的特定重点。缺血性中风的危险因素表现出足够的空间,用于基本(次优健康)和继发性(临床表现出有助于中风风险的临床表现的附带疾病)的经济高效预防干预措施。这些风险是相互关联的。例如,久坐的生活方式和有毒环境都会引起线粒体压力,全身性低度炎症和加速衰老。炎症是一种与加速衰老和中风不良相关的低度炎症。压力超负荷,线粒体生物能力降低和低镁血症与包括青少年在内的所有年龄段的心脏和大脑中的全身血管痉挛和缺血性病变有关。叶酸中的饮食模式不平衡,但富含红色和加工的肉,精制的谷物和含糖饮料与高舒适的人性血症,全身性炎症,小血管疾病和增加有关。收集的数据表明,相关的风险和相应的分子途径相互关联。正在进行的3pm研究对欧洲预测,预防和个性化医学协会(EPMA)促进的人群中的弱势群体(EPMA)展示了对基于泪液的健康风险评估评估的整体患者友好型非侵入性方法的有希望的结果,该方法是由基于AI的生物传感器和AI基于AI的多技术数据来解释的epma Compert the Epma专家。举例来说,IS涉及的分子模式与糖尿病性视网膜病变是糖尿病患者IS风险的早期指标。仅说明其中的一些,例如5-氨基乙烯酸/途径,这也是改变线粒体模式,失眠,应力调节和微生物群 - 脑脑串扰的调节的特征。此外,神经酰胺被认为是心脏代谢疾病中氧化应激和炎症的介体,对线粒体呼吸链功能和裂变/融合活性,睡眠 - 效果行为改变,血管僵硬和重塑的影响产生负面影响。黄嘌呤/途径调节与线粒体稳态和压力驱动的焦虑样行为以及动脉僵硬的分子机制有关。为了评估个人健康风险,机器学习的应用(AI工具)对于通过多参数分析执行的准确数据解释至关重要。包括年轻人口的需求以及在初级和二级护理中的个性化风险评估,成本效能,创新技术和筛查计划的应用,专业人士的高级教育措施以及普通人群的高级教育措施 - 这都是从反应性医疗服务到3PM的范式更改为总体上的范围,由EPMA的整体促进。
图3。径向极化的QD激光是从杂种W TM -SLR纳米腔实现的。(a)在线性尺度上针对不同输入泵脉冲能的正常检测角度收集的发射光谱。插图:输出发射强度是对数字尺度上输入泵脉冲能量的函数。(b)激光发射光束的远场图案。白色箭头显示输出激光模式的极化方向。(c)在选定的极化方向下的光束轮廓。白色箭头在检测器前显示线性偏振器的偏振方向。(d)在p偏振光下的小波vector上模拟带结构。黑色圆圈指示k x = 0的w tm -slr模式。红色圆圈表示在非零K x处的W TM -SLR边带。(E)在W TM -SLR边带处模拟电场(| E | 2,单位为V 2 /M 2)。在模拟中将入射光E 0的电场设置为1 V/m。