摘要:非线性块体晶体中的反向传播参量转换过程已被证明具有独特的特性,可实现高效的窄带频率转换。在量子光学中,在波导中通过反向传播参量下转换过程 (PDC) 生成光子对,其中信号光子和闲置光子以相反的方向传播,提供了独特的与材料无关的工程能力。然而,实现反向传播 PDC 需要具有极短极化周期的准相位匹配 (QPM)。在这里,我们报告了在自制的周期性极化铌酸锂波导中生成反向传播单光子对,其极化周期与生成的波长在同一数量级。双光子状态的单光子以可分离的联合时间光谱行为桥接 GHz 和 THz 带宽。此外,它们允许使用最先进的光子计数器直接观察预示单光子的时间包络。
量子态工程是量子光子技术的基石,主要依赖于自发参量下转换和四波混频,其中一个或两个泵浦光子自发衰减为一个光子对。这两种非线性效应都要求参与光子的动量守恒,这严重限制了所得量子态的多功能性。非线性超表面具有亚波长厚度,可以放宽这一限制;当与共振结合时,它们大大扩展了量子态工程的可能性。在这里,我们通过自发参量下转换在具有高品质因数、连续共振中准束缚态的半导体超表面中生成纠缠光子。通过增强量子真空场,我们的超表面在多个窄共振带内和宽光谱范围内增强了非简并纠缠光子的发射。在多个波长下泵浦的同一样品中的单个共振或多个共振可以产生多频量子态,包括簇态。这些特征表明超表面是量子信息的复杂状态的多功能来源。O
二维材料中的层间电子耦合可通过堆叠工程实现可调和的突发特性。然而,它也会导致二维半导体电子结构的显著演变和激子效应的衰减,例如当单层堆叠成范德华结构时,过渡金属二硫属化物中的激子光致发光和光学非线性会迅速降低。这里我们报告了一种范德华晶体——二氯化氧化铌 (NbOCl 2 ),其特点是层间电子耦合消失,块体形式下具有单层状激子行为,以及比单层 WS 2 高三个数量级的可扩展二次谐波产生强度。值得注意的是,强二阶非线性使得能够通过自发参量下转换 (SPDC) 过程在薄至约 46 纳米的薄片中产生相关参量光子对。据我们所知,这是第一个在二维层状材料中明确展示的 SPDC 源,也是有史以来报道的最薄的 SPDC 源。我们的工作为开发基于范德华材料的超紧凑片上 SPDC 源以及经典和量子光学技术中的高性能光子调制器开辟了一条道路 1–4 。
OZ Optics 提供纠缠光子源,在马赫-曾德尔干涉仪内实现一对周期性极化晶体。偏振纠缠光子对通过 2 型自发参量下转换 (SPDC) 产生。部署了多个偏振位移器 (PD) 以将光子对分离到两个输出端口,安装在前面板上,如照片所示。光子对的中心波长为 810 nm,带宽为几纳米。每个光源都配备波长稳定的泵浦激光器、可变光衰减器和温度控制器,以微调相位匹配参数,实现最佳效率。
压缩态的压缩分布到一组独立的光学模式上,是连续变量量子信息技术领域的重要量子资源 [1],例如单向量子计算 [2] 和量子通信 [3]。此外,多模压缩光在计量应用方面是一种很有前途的工具,特别是用于具有量子增强灵敏度的多参数估计 [4,5]。例子包括通过空间多模压缩实现量子成像 [6,7],以及利用时间/光谱多模压缩光实现远距离时钟的量子改进同步 [8]。上述广泛的潜在应用与不断增强的产生、控制和检测多模量子光的能力密切相关,这得益于空间光调制器、光频率梳、多像素探测器等光学技术的发展。压缩光通常通过放置在光学腔内的二阶非线性晶体中的参量下转换 (PDC) 获得,即所谓的光学参量振荡器 (OPO)。光学腔增强了非线性相互作用,并将压缩光限制为单个空间模式。通过利用光的不同自由度(例如时间/光谱 [ 9 ]、空间 [ 10 ] 和轨道角动量 [ 11 ]),可以产生多模压缩。然而,OPO 谐振腔将压缩带宽限制在谐振腔带宽内。产生宽带多模压缩的一种有前途的替代方法是使用单通 PDC 源,用脉冲激光器泵浦,该激光器在频域中具有光频梳 [ 12 ]。采用脉冲泵浦的单通设计可确保在 PDC 输出的每个脉冲上都维持压缩 [ 13 , 14 ]。基于非线性波导的单通
基于非线性晶体内自发参量下变频的光子对源 [1],一直是获得光量子态的主要方法,用于基础研究和应用研究。此类光源在量子物理学的基础测试 [2](贝尔不等式测试)以及基于量子力学的安全通信协议 [3](例如量子密钥分发)中发挥了关键作用。当端到端系统效率提高时,所有应用程序的性能都可以得到改善。仅当整体系统效率较高时,涉及同时生成和检测多对光子的拟议应用才会实用。系统效率(以巧合与单次比或 C/S 衡量)取决于光子对的制备和收集、它们的传输和检测。
在本研究中,我们利用β-硼酸钡 (BBO) I 型非线性晶体产生纠缠光子对。这些对被称为信号光子和闲置光子,具有独特的纠缠特性,是量子密码学和量子隐形传态等技术的基础。光子是通过称为自发参量下转换 (SPDC) 的过程产生的,当泵浦激光束穿过非线性介质时就会发生这种情况。该过程受动量和能量守恒控制,从而产生特定的相位匹配条件,决定光子对的空间和频率相关性。该项目的目标是通过基于巧合检测系统检查这些纠缠光子对的时间相关性来表征它们。
非线性光学在激光技术中有着广泛的应用,包括光参量放大、电光开关、倍频和混频。从技术角度来看,研究非线性光学 (NLO) 特性对于设计 NLO 设备和理解控制光与物质相互作用的潜在机制至关重要。超短激光脉冲可以通过利用 NLO 特性、可饱和吸收 (SA) 来产生,因此可饱和吸收体是脉冲激光器中的关键光学元件。半导体可饱和吸收镜 (SESAM) 因其高稳定性而在商业上用作可饱和吸收体,但它具有制造工艺复杂和带宽有限的缺点。1 为了开发超快激光器,需要不同的 NLO 材料