量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是实现长距离光纤网络的最有前途的技术之一,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性稳定帧交错来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
量子力学允许通过光学方法分发本质上安全的加密密钥。双场量子密钥分发是最有希望在长距离光纤上实现的技术,但需要稳定双方通信信道的光长。在基于卷轴光纤的原理验证实验中,这是通过将量子通信与周期性调整帧交织来实现的。在这种方法中,密钥流的较长占空比是以对信道长度的控制较松为代价的,并且在现实世界中使用此技术成功传输密钥仍然是一项重大挑战。利用源自频率计量的干涉测量技术,我们开发了一种同时进行密钥流和信道长度控制的解决方案,并在 206 公里现场部署的光纤上进行了演示,损耗为 65 dB。我们的技术将信道长度变化导致的量子比特误码率降低到 <1%,代表了现实世界量子通信的有效解决方案。
在这项工作中,我们应用优势蒸馏方法来提高集体攻击下实用的双场量子键分配系统的性能。与Maeda,Sasaki和Koashi [自然通信10,3140(2019)]给出的先前的分析结果相比,通过我们的分析方法获得的最大传递距离将从420 km增加到470 km。通过将独立损失的未对准误差增加到12%,先前的分析方法无法克服率距离结合。但是,当未对准误差为16%时,我们的分析方法仍然可以克服率距离。更令人惊讶的是,我们证明,即使未对准误差接近50%,双场量子键分布也可以产生正面的安全密钥,因此我们的分析方法可以显着提高实用的双胞胎量子量子键分布系统的性能。
如果我们用偏振分束器替换分束器,并分别用 H 和 V 偏振而不是随机强度来准备信号,我们可以在布洛赫球的赤道上创建随机偏振状态 ( ۧ |𝐻+ 𝑒 𝑖𝜙 ۧ |𝑉)/ 2。
量子密钥分发 (QKD) 是基于物理学基本定律分发秘密比特的技术,它能够实现信息论安全通信,而不受潜在窃听者无限计算能力的影响 1 。在过去的三十年中,QKD 引起了广泛关注,并且已经发展成熟,可以在光纤网络上进行实际部署 2、3 。然而,信道损耗阻碍了 QKD 的广泛应用,从而限制了密钥速率和 QKD 范围的提高 4 – 7 。在 QKD 系统中,作为量子密钥载体的光子是在单光子级别准备的,大部分会被传输信道散射和吸收。然而,它们无法被放大,因此接收方检测到它们的概率非常低。对于从发射机到接收机的直接光纤链路,密钥速率随着传输距离的增加呈指数下降,并且不能超过基本速率-距离极限 O(η),其中 η 表示链路的透射率 8、9。双场 (TF) QKD 建立了一个有前途的速率-距离关系 O(√η),从而无需量子中继器即可克服这一限制,并且即使在长距离上也能实现相当大的密钥速率 10。人们做出了巨大努力来发展其理论 11 – 28 并通过实验展示其独特的优势 29 – 39。参考文献 11 和 12 首先证明了 TF-QKD 的普遍安全性,然后基于参考文献 11 在 502 公里超低损耗 (ULL) 光纤上实现了实验 33。通过消除代码模式中的全局相位随机化和相位后选择,提出了另一种称为无相位后选择 (NPP) TF-QKD 的变体 14 – 16,并在多个实验 30、32、35 中进行了演示。由于代码模式中的所有检测事件都用于密钥生成,因此 NPP TF-QKD 可以实现相对较高的密钥速率,例如,在 300 公里光纤上实现 2 kbps 的渐近密钥速率 30。同时,
摘要 - 本文提出了一种新的机器人辅助双侧上肢训练策略,重点是用户上肢的双边协调。该策略是在双侧上肢康复装置(Bulred)上实施和评估的,该装置是由两个Maxon DC电动机促成的H机器人机制。控制系统由位置控制器,入学控制器和一种自适应算法组成,其中根据培训性能,通过会话修改了会话。此策略还与特定于主题的工作区集成在一起,以增强培训安全性。通过主动达到任务对五个受试者进行了实验。结果表明,提出的培训策略需要双侧上肢的显着协调,以完成任务完成,并且能够根据参与者的培训表现将控制参数调整到适当的难度水平。未来的工作将集中于对上肢障碍患者的临床评估。
摘要 双场量子密钥分发(TF-QKD)是一种颠覆性创新,它能够克服无需可信中继的 QKD 速率-距离限制。自第一个 TF-QKD 协议提出以来,人们在理论和实验上不断取得突破,以增强其能力。然而,仍有一些实际问题有待解决。在本文中,我们研究了具有不稳定光源和有限数据量的非对称 TF-QKD 协议的性能。使用 Azuma 不等式估计参数的统计波动。通过数值模拟,我们比较了具有不同数据量和不同强度波动幅度的非对称 TF-QKD 协议的密钥速率。我们的结果表明,统计和强度波动都对非对称 TF-QKD 的性能有显著的影响。