在我们的实验室,我们从心尖视图的三平面图像开始成像。三平面图像本质上是三个不同角度的同步图像,在同一心跳中提供四腔、二腔和三腔视图。这使我们能够可视化和访问心壁的各个方面,检测壁运动异常,并使用 AFI 包测量整体纵向应变。它还通过 AI 视图识别和自动轮廓绘制提供双平面射血分数,并且速度很快。除此之外,三平面视图还使我们能够评估图像质量并立即确定我们是否需要回声对比,并可以提前开始规划。当我告诉人们这一点时,他们会说,“你为什么从那个 [视图] 开始?” 我说,“那么,我们为什么要从胸骨旁长轴开始?”
本研究旨在开发一个程序使用 GUI MATLAB 试验通信系统操作并评估程序的质量。仿真由5位专家开发,研究工具包括3个通信系统仿真程序:并行传输线。双平面传输线和同轴传输线和质量评估研究结果发现,所开发的仿真程序在设计方面平均适当性为83.50%,在工作流程方面平均适当性为84.5%,在工作功能方面平均适当性为87.50%,在工作质量评估方面平均适当性为83.50%。该计划的运作进化实验平均得分处于较高水平 (𝑥̅ =4.16,SD=0.35),并且程序结果之间的比较结果利用理论结果开发的模型持续的这表明开发的模拟程序可以用于可作为一种有效的教学媒介。
COSY-TOF 是一种非常大的带电粒子接受度光谱仪,它使用关于反应产物的轨道几何形状和飞行时间的精确信息。它是位于于利希的冷却器同步加速器和储存环 COSY 的外部探测器系统。为了提高 COSY-TOF 的性能,正在构建一种新的跟踪探测器“秸秆跟踪器”,它结合了非常低的质量、在真空中操作、非常好的分辨率、高采样密度和非常高的接受度。pp → dπ + 数据与仅使用秸秆跟踪器进行几何模拟的比较表明,新跟踪器有很大的改进。为了研究秸秆跟踪器的特性,预先构建了一个小型跟踪导流管“宇宙射线测试设施”。它由两个交叉导流管组成,由 128 个排列在 4 个双平面上的秸秆管组成。尤利希吸管首次用于宇宙射线轨迹的三维重建。在这个照明领域,研究了闪烁体和吸管的空间相关响应。
[2][3]作者介绍了一种锥形缝隙天线和一种对映锥形缝隙天线,通过合并六个以上的谐振来实现 UWB 响应。这种结构有许多几何参数,并且在不同频率下获得的辐射模式也不稳定。Hoods 等人 [4] 提出了一种双平面 UWB 结构,它具有小增益和不均匀的辐射模式。在 [5] 中,作者介绍了一种紧凑型 UWB 天线,其中通过两个半圆来增强带宽。在 [6] 中,通过引入一个带缝隙的附加环形结构来实现 UWB 操作。[7] 中讨论了一种基于混合缝隙馈电网络的 UWB 天线。[8] 中介绍了通过在微带馈电的接地平面上创建 UWB 特性。Shameena 等人 [9] 介绍了一种 CPW 馈电 UWB,其中使用具有许多维参数的阶梯形缝隙来实现 UWB 特性。C Vinisha 等人[10] 介绍了一种电小尺寸 CPW 馈电 UWB,其中使用环形环来获得超宽带宽。S. Nicolaou 等人在 [11] 中讨论了一种 UWB 辐射器,其槽呈指数锥形,尺寸非常大,增益很小。[12] 介绍了一种非均匀辐射、小增益 UWB 偶极天线。它提供了较差且高度失真的脉冲响应。[13] 讨论了一种适用于医学成像应用的定向 UWB,尺寸非常大,辐射方向图不均匀。然而,上述所有天线尺寸都很大或结构复杂
摘要 目的 除矢状线对齐外,还强调了横平面参数 (TPP) 和旋转半脱位对患者报告结果的影响。退行性脊柱侧弯成因的假设之一是椎间盘退化,伴有轴向椎体 (AVR) 和椎间旋转 (AIR) 增加。因此,脊柱侧弯早期的 TPP 分析似乎特别令人感兴趣。本研究旨在评估成人脊柱畸形 (ASD) 患者三维 (3D) 重建的可靠性。方法 30 名 ASD 患者接受双平面 X 线检查,并分为两组(Cobb 角 [ 30 � 或 \ 30 � )。测量脊柱参数和 TPP(顶端 AVR、主曲线上部和下部的 AIR)。四位操作员进行了两次 3D 重建。使用 ISO 标准 5725-2 分析观察者内和观察者之间的可靠性,以量化可重复性的全局标准偏差 ( S R )。结果平均 Cobb 角为 31 �,平均年龄 55 岁(70% 为女性)。顶端 AVR、上部和下部 AIR 的平均值分别为 16 � ± 15 �、6 � ± 6 � 和 5 � ± 5 �。脊柱骨盆参数 S R 低于 4.5 �。对于 Cobb 角 \ 30 � ,AVR 顶点、扭转指数、上部和下部的 S R 分别为 7.8 �、9.6 �、4.5 � 和 4.9 �