摘要 量子操控是一种具有独特非对称性的量子关联,在非对称量子信息任务中具有重要的应用。我们考虑一种新的量子操控场景,其中两量子比特 Werner 态的一半由多个 Alice 依次测量,另一半由多个 Bob 测量。我们发现,当测量设置数 N 从 2 增加到 16 时,可以与单个 Bob 共享操控权的最大 Alice 数量从 2 增加到 5。此外,我们发现一个违反直觉的现象,即对于固定的 N ,最多有 2 个 Alice 可以与 2 个 Bob 共享操控权,而允许 4 个或更多 Alice 与单个 Bob 共享操控权。我们通过计算初始 Werner 态所需的纯度进一步分析了操控共享的稳健性,其下限从 0.503(1) 到 0.979(5) 变化。最后,我们证明了如果采用初始非对称状态或非对称测量,我们的双侧顺序转向共享方案可以用于控制转向能力,甚至转向方向。我们的工作深入了解了转向共享的多样性,并且可以扩展到研究应用顺序模糊测量时的真正多部分量子转向等问题。
摘要一种未来的人造视网膜,可以恢复盲人的高敏度视力,将依靠能够使用自适应,双向和高分辨率设备来读(观察)和写入(观察)和写(控制)神经元的尖峰活动。尽管当前的研究重点是克服构建和植入这种设备的技术挑战,利用其能力来实现更急性的视觉感知也将需要实质性的计算进步。使用Ex Vivo多电极阵列实验室原型使用高密度的大规模记录和刺激,我们构成了一些主要的计算问题,并描述了当前的进度和未来解决方案的机会。首先,我们通过使用从大型实验数据集中学到的低维变异性变异性的低维歧管来确定盲视网膜自发活动的细胞类型和位置,然后有效地估计其视觉响应特性。第二,我们通过通过电极阵列传递电流模式来估计对大量相关电刺激的视网膜响应,尖峰对产生的记录进行排序,并使用结果来开发诱发响应的模型。第三,我们通过在视觉系统的整合时间内暂时抛弃各种电刺激的收集来重现给定的视觉目标的所需响应。一起,这些新颖的方法可能会在下一代设备中大大增强人造视力。
引言量子协议领域的研究已经得到了广泛的开展。在量子密码学领域,Ekert [1]使用两个EPR量子比特(Einstein、Podolsky、Rosen)的状态作为状态紧密性测试器,并在Bennet通信协议[2]中通过单粒子和双粒子算子共享这个EPR。1993年,Bennet等人[3]首次提出了通过EPR通道进行一个量子比特状态的量子隐形传态的理论协议。量子隐形传态是通过划分量子纠缠态和涉及一些非局部测量的经典态,在发送者(Alice)和接收者(Bob)之间的不同地方发送任意数量的无法识别的量子比特的过程。一般来说,Alice中的非局部测量采用射影测量,而Bob中的非局部测量则是幺正操作。还有一些协议,其非局部测量是通过 Aharanov 和 Albert [4] 的方法实现的,Kim 等人 [5] 的实验和 Cardoso 等人 [6] 的工作中实现了非线性相互作用,这些相互作用利用了状态源腔和通道源之间的共振。对于任意两个比特的纠缠态,量子通道的选择是通过 Schmidt 分解测试 [23] 获得的,而在多立方体中,则是通过其约化密度矩阵的秩值的组合 [24] 获得的。
共晶SN-CU合金认为是有毒SN-PB焊料合金的潜在替代品之一。这项工作旨在通过研究每种需要x = 0.3和0.5 wt。%的需要次的需要次的鞭毛(BI)和银(Ag)含量的影响,从而提高共晶SN-SCU合金的机械性能,每种需要次的需要次的需要次鞭毛(BI)和银(Ag)含量对As- castectic Eutectic eutectic sn-cu alloy的机械性能的影响。使用X射线衍射(XRD)和蠕变测试机研究了三元AS-Cast Sn-Cu-X(X = BI或Ag)合金。 结果表明,在Eutectic Sn-Cu合金中添加0.3和0.5 wt。%的BI添加不会促进CU6SN5 IMC的形成,而只是将其从102转移到202个方向。 上述BI添加已完善了β-SN粒径和扩大的Cu6SN5 IMC,因此减少了晶格失真,通过在室温下(RT)的不同载荷(RT),通过拉伸载荷通过拉伸载荷来直接增强了这些AS铸造合金的机械性能和可靠性。 将BI的0.3和0.5 wt。在铸物的共晶合金中加入其他IMC(AG3SN),与Cu6Sn5相形成了其他IMC(AG3SN),由于其不同的晶体结构(AG3SN(orthorhombombic)和Cu6sn5(hex)),与其匹配的CU6SN5相位不匹配它。 为此,结构稳定性下降,导致外力的电阻较低,机械可靠性低。 机械改进(高破裂时间(5498.85 s),低应变速率和应力指数(9.48))已与BI添加0.5 wt。与其他添加相比,BI添加0.5 wt。与其高结构稳定性密切相关。三元AS-Cast Sn-Cu-X(X = BI或Ag)合金。结果表明,在Eutectic Sn-Cu合金中添加0.3和0.5 wt。%的BI添加不会促进CU6SN5 IMC的形成,而只是将其从102转移到202个方向。上述BI添加已完善了β-SN粒径和扩大的Cu6SN5 IMC,因此减少了晶格失真,通过在室温下(RT)的不同载荷(RT),通过拉伸载荷通过拉伸载荷来直接增强了这些AS铸造合金的机械性能和可靠性。将BI的0.3和0.5 wt。在铸物的共晶合金中加入其他IMC(AG3SN),与Cu6Sn5相形成了其他IMC(AG3SN),由于其不同的晶体结构(AG3SN(orthorhombombic)和Cu6sn5(hex)),与其匹配的CU6SN5相位不匹配它。为此,结构稳定性下降,导致外力的电阻较低,机械可靠性低。机械改进(高破裂时间(5498.85 s),低应变速率和应力指数(9.48))已与BI添加0.5 wt。与其他添加相比,BI添加0.5 wt。与其高结构稳定性密切相关。从机械的角度来看,建议使用SN-0.7CU-0.5BI合金成为大规模生产和加工焊接和电子组件的最可靠合金。