适用性,出色的化学和物理稳定性以及有利的晶体生长习惯。金属卤化物被高度视为重要的光学功能材料,因为它们的优势是易于制备,丰富的配位环境,宽透明范围,高激光诱导的损伤阈值,并且在发光的边界eLS中应用,太阳能电池,太阳能电池,激光频率转换等等。22 - 29中,二元金属卤化物由于其简单的组成和成本效果而被广泛使用:KBR通常用作傅立叶变换红外(FT-IR)光谱的背景材料,因为其广泛的透明范围超过25 m m; 30 CAF 2和BAF 2具有出色的机械性能,热稳定性和辐射抗性,以及从深紫外线(UV)到IR区域的高透明度,这些透明度可用于光学棱镜,透镜,楔形板,隔膜,隔膜和其他重要的光学组件。31由于上述原因,二元金属卤化物的出色物理和化学特性与我们对下一代双重晶体材料的期望一致,这使得它们被视为具有巨大潜力的双折射材料国库。另一方面,金属卤化物显示出各种的配位模式,包括线性,三角形锥体,四面体和方形锥体结构,这是有希望的机会,可以识别具有相当性的构建块的隔离性各向异性各向异性材料。在基于Hg的卤化物中,除了传统的[HGX 4](X =卤素)四面体外,还存在很少的[X - HG - X]或[X - HG - HG - HG - HG - X]线性单位。25通过比较和筛选,由于其丰富的散装和广泛的透明范围,基于二进制的基于二进制汞(基于HG)的卤化物已成为我们的焦点。32 - 36 in
※在塑料模制物体中观察到的双折射的主要部分被认为源自分子取向,而不是光弹性。因此,对于这种类型的对象,从观察到的双折射中计算出一定的应力是不合理的。然而,双折射的差异仍然可以与整个成型过程的差异有关。这就是为什么双折射分析是用于塑料成型过程的良好评估技术的原因。
在光纤中基于KERR非线性的四波混合(FWM)过程已被证明可以在过去二十年中启用许多全光信号处理设备,例如波长转换器[1,2],光相结合器[3-5] [3-5]和相位敏感的放大器[6,7]。这些全光学系统可能会成为未来高容量波长多路复用(WDM)网络的重要组成部分,这要归功于它们在超宽带宽和延迟较低的情况下运行的潜力。有多种通常用于FWM的非线性介质,包括硅[8-10]硝酸硅[11-15]和半导体光学放大器(SOAS)[16-19],对于全光信号处理应用来说是有希望的。值得注意的是,硅和SOA在适当地进行工程时表现出了它们在执行极化信号处理操作[20-22]方面的潜力。由于其低耦合损耗(当剪接时)和低传播损失,光纤(尤其是高度非线性纤维(HNLF)[23,24]的低耦合损耗(当时)[23,24],分散较低)仍然是一种流行的培养基。在许多FWM过程中,需要非生物的纤维。但是,实际上,现实世界中的纤维样品通常将具有一些小的残留双折射,导致它们被描述为“低折双发性”纤维。此类纤维[23]已知在核心直径中表现出随机的纵向变化,进而导致纵向变化的双折射。纵向变化的双折射随机使输入信号的极化状态随机,使基于FWM的设备对极化更敏感,这可能对需要极化的强度敏感的应用特别有害[25]。众所周知,即使是从相同的纤维线轴捕获的样品的纤维双发性分布也不同于样品之间,这使得给定系统的确切行为降低了基于纤维的FWM技术的可预测性,更复杂的商业化。
摘要:此贡献量化了注射循环烯烃共烯板中的双折射,并讨论了其对平板机械性能的影响。它还侧重于双折射对集成波导和布拉格光栅的影响,并为此类结构提供制造准则。通过极化法和棱镜耦合器检查工件的所有三个维度的各向异性。发现双折射是在工件内分布的,而最大双折射不仅在本地变化,而且还取决于观察方向。总体而言,在注射门附近的板表面上发现了最大双折射10-4。各向异性然后以0.4 mm的深度为1.8×10-4饱和,在工件的中心呈指数级降低。因此,双折射强烈影响近地表光子结构。发现,取决于其方向和基板的局部双折射,带有可比参数制造的Bragg Gragg Gragg,在极化依赖性的光学衰减,横截面强度分布和Bragg Reflection信号方面,其表现完全不同。例如,TM模式的支持可以在总损耗和0.9 db×cm -1的光学衰减之间有所不同。因此,这项研究强调了量化注射循环烯烃共聚物工件的双重折射状态的重要性,如果应该用作综合光子结构的底物。此外,这项研究表明,可以通过将光子结构深入到热塑性塑料的体积中来省略双折射效应。
轴突周围的神经细胞膜。这种独特的结构促进了通过公认的盐传导现象3及其结构各向异性在此报告的光学成像中的基础。在CNS的脱髓鞘疾病中,对髓磷脂的损害或促进它的少突胶质细胞是疾病过程的主要作用,并且可能由于自身免疫反应,病毒或毒素,代谢性疾病以及低氧或缺血性挑战而发生。4脱髓鞘疾病的经典例子是多发性硬化症(MS),其中CNS炎症会导致对髓磷脂的大规模侮辱,5引起可变的运动,认知和神经精神症状的可变范围。6超出MS,增加证据指向髓磷脂分解是其他主要神经退行性疾病的重要因素,包括与年龄相关的认知能力下降,7 - 9阿尔茨海默氏病(AD),10-14和Stroke。15 - 17
3D 偏振光成像 (3D-PLI) 方法测量组织学脑切片的双折射以确定神经纤维 (髓鞘轴突) 的空间走向。虽然可以高精度地确定平面内纤维方向,但计算平面外纤维倾角更具挑战性,因为它们是从双折射信号的幅度中得出的,而双折射信号的幅度取决于神经纤维的数量。提高精度的一种可能性是考虑平均透射光强度 (透射加权)。当前程序需要费力地手动调整参数和解剖知识。在这里,我们引入了一种自动化、优化的纤维倾角计算,从而可以更快、更可重复地确定 3D-PLI 中的纤维方向。根据髓鞘的程度,该算法使用不同的模型 (透射加权、不加权或线性组合),从而可以考虑区域特定行为。由于该算法是并行的和 GPU 优化的,因此可以应用于大型数据集。此外,它仅使用标准 3D-PLI 测量的图像(无倾斜),因此可以应用于以前测量的现有数据集。此功能已在黑长尾猴和大鼠脑的未染色冠状和矢状组织切片上得到验证。
即使在今天,电磁波谱的大部分区域仍未被任何已知的直接激光源覆盖,或者至少未被能够满足预期实际应用要求的激光源覆盖。幸运的是,大自然总是提出替代的解决方案,在这种情况下,解决方案被称为频率转换。为了支持这些努力,许多双折射和非双折射、铁电和非铁电、氧化物和非氧化物、光学和半导体材料最终参与了这一过程。非线性光学材料具有依赖于照明的特性,还具有出色的操纵光信号的能力,而无需进行光电光转换,这意味着非线性光学材料也可用于光电子学。通过这个简短的介绍,我们想邀请研究人员和工程师、实验者和理论家分享他们最近的发现、创新想法以及他们对这项研究未来的愿景,或者简而言之,他们对非线性光学材料的热情和激情。
光子晶体光纤 (PCF)(一种沿其长度方向具有复杂空心通道阵列的细玻璃丝)自 20 世纪 90 年代问世以来,开创了线性和非线性光纤光学的新时代。除了可以前所未有地控制色散和双折射之外,它们还可以用于实心玻璃和空芯。它已出现许多应用,例如:通过压力可调色散,充气空芯 PCF 可以巧妙地将脉冲压缩为单周期持续时间,并支持一系列独特的可调深紫外和真空紫外光源;手性 PCF 具有圆和拓扑双折射特性,可支持光学涡旋,在某些情况下还支持强圆二向色性;光学捕获在空芯 PCF 内部的微粒可用于以高空间分辨率感测物理量;实芯PCF中的强光机效应允许在几GHz重复率下实现稳定的时间调制高次谐波锁模。
如果您的团队时间紧迫,我们的专业照明工程师可以根据您的项目要求开发定制的 UDOP。任何 UDOP 的开发都需要一定的努力来实现框架。除此之外,所需的努力取决于要建模的物理的复杂性。例如,实现简单的散射 UDOP 可能只需要很少的努力。更复杂的物理问题,例如建模双折射材料或全息图,通常需要更多的努力。我们的工程服务团队在开发 UDOP 以支持高级物理模型方面拥有丰富的经验。