超级电容器是一种重要的电化学储能装置。1~3单个超级电容器由电极、隔膜、电解液和集流体组成,其中电极材料是最重要的组成部分。4超级电容器技术进步的关键在于开发高性能的电极材料。5多孔碳材料在超级电容器电极中得到了广泛的应用,研究日益深入。6,7碳基超级电容器主要利用电极与电解液界面处形成的双电层进行电荷存储。碳材料的孔结构,包括比表面积、孔径及尺寸分布,是决定碳电极材料电容性能的关键。8,9
沿温度梯度热扩散的离子热电材料是最近出现的一类新型材料。在这些材料中,离子的热扩散产生的热电压比暴露在相同温度梯度下的经典电子热电材料高几个数量级。电解质如今被视为热电材料,因为它们成本低、热导率低、热稳定性和电稳定性高。[5] 另一个主要优点是工作温度低于 250°C,这包括 50% 的所有产生废热。[6] 沿热梯度热扩散的离子无法进入电子电路,因此会积聚在电极/电解质界面,形成双电层。在对理想超级电容器进行热充电时,存储的电能与热电压二次相关:
摘要。地球内核的 P 波和 S 波速度分布表明,自地球和太阳系诞生以来,地球物质就一直处于量子纠缠状态。我们做出的这一假设使我们能够开发地磁场从开始到消失的量子模型。与普遍接受的发电机不同,我们的模型提供了一个明显的能量源,即相变以及在相变过程中释放的热能、机械能和电能。后者产生双电层,其旋转产生初始偶极场。改变相变方向会导致磁场反转。在热地球模型框架内分析了地球、月球、水星和火星的磁和古地磁数据,NASA 项目记录了它们的引力特征,这些特征为行星的形成和演化提供了条件,从而为地球及其磁场的进一步演化提供了预测。
摘要 具有高拉伸性、灵敏度和稳定性的柔性压力传感器无疑是智能软机器人、人机交互、健康监测等领域潜在应用的迫切需求。然而,目前的柔性压力传感器大多由于其多层结构,无法承受大变形,在频繁操作过程中容易出现性能下降甚至失效。本文提出一种可拉伸全纳米纤维离子电子压力传感器,其由离子纳米纤维膜作为介电层、液态金属作为电极组成。该传感器在0~300 kPa的宽范围内表现出1.08 kPa -1的高灵敏度,具有约18/22 ms的快速响应-松弛时间以及良好的稳定性。高灵敏度来自于离子膜/电极界面形成的双电层,而高拉伸性和稳定性则源于原位封装的全纳米纤维结构。作为概念验证,原型传感器阵列被集成到柔性气动夹持器中,展示了其在抓取过程中的压力感知和物体识别能力。因此,该方案提供了另一种极好的策略来制造在高拉伸性、灵敏度和稳定性方面具有出色性能的可拉伸压力传感器。
超级电容器和可充电电池都是储能设备,其中一种的性能优势传统上是另一种的弱点。电池受益于卓越的储能容量,而超级电容器具有更高的功率和更长的循环寿命。这些设备在电动汽车和电网储能应用中的快速应用正在推动它们的进一步发展和生产。积累和理解这两种设备技术的现有知识将为这两个有着共同目标的不同领域未来研究和开发的进展奠定基础。因此,在这篇评论中,我们汇总了过去 18 年超级电容器和电池的能量功率性能趋势,以预测未来十年这些技术的发展方向。我们特别讨论了每种技术在储能领域的影响及其对混合研究的影响。趋势预测表明,到 2040 年,性能最佳的非对称和混合超级电容器在能量密度 (ED) 方面可以与目前正在开发的商业电池技术相媲美。在功率密度 (PD) 方面,电池技术可以实现与某些基于双电层 (EDL) 的超级电容器相当的性能。对于某些应用,我们预见到这两种设备将继续混合以填补能量功率缺口,从而使增强 ED 对 PD 的惩罚变得微不足道。这种预期的改进最终可能会达到饱和点,这表明一旦达到一定水平的 ED,任何进一步的指标增强只会导致与 PD 的严重权衡,反之亦然。在这些技术中观察到的饱和也促使人们探索新的途径,特别强调可持续性,以使用可再生材料和方法实现高性能。
为了降低 RO 工艺的能量需求,研究人员还在研究其他技术,如纳滤。[3–5] 在这些技术中,电容去离子 (CDI) 在能耗、工艺简单、减少结垢和低成本方面具有众多优势。[6] 对于 CDI,不需要膜和压力。盐通过电场去除,并以双电层 (EDL) 的形式储存在多孔介质中以产生淡水。电容技术的传统电极依赖于高导电性和高表面积的碳基材料。[7–10] CDI 的工作原理与流体电化学电容器相同;[11] 对浸入含有电解质的溶液中的两个多孔电极施加电压,离子被吸引到电极表面并形成 EDL。这种机制可以在不施加过压的情况下从水中去除盐分,由于没有机械运动部件,因此维护工作量较少。此外,能量不会在此过程中损失,而是以电化学能的形式储存在电极内部。因此,它可以以静电荷存储特有的极高效率进行回收。遗憾的是,这项技术的现状与更成熟的反渗透技术的性能还相差甚远。[7,12] 必须开发出具有高除盐率、低能量损失和可扩展工艺的新材料。在这种情况下,具有净表面电荷的功能化材料引起了科学界的极大兴趣。[13–15] 众所周知,控制表面电荷的种类可以提高 CDI 设备的脱盐性能,因为这与微调零电荷电位 (V PZC ) 的可能性直接相关。 [16,17] V PZC 是必须施加在电极上以确保其表面电中性的电位。通常,每种材料都有自己的 V PZC,这取决于其表面存在的化学物质。例如,由高氧化度碳原子构成的氧化石墨烯 (GO) 在水中始终显示负的 z 电位,因此如果用作 CDI 电极材料,则具有正的 V PZC。考虑电极 V PZC > 0 的情况将有助于阐明这一概念。在平衡状态下,该电极的表面将充满正电荷。然后,如果施加大于 V PZC 的电压,就会发生称为“共离子驱逐”的现象。从 0 到 V PZC 的电位将用于排出表面上自然存在的正电荷(同离子),而其余部分( V − V PZC )将用于存储负电荷(反离子)。类似的推理