摘要 - 具有超低泄漏和出色稳定性的静态随机记忆细胞是当代智能设备中设备上层的记忆的主要选择。本文介绍了一个新型的8T SRAM细胞,其泄漏降低并证明是稳定性的。所提出的SRAM单元使用堆叠效果来减少泄漏和传输门作为访问晶体管以增强稳定性。已经根据功耗和静态噪声边缘(RSNM,HSNM和WSNM)分析了所提出的具有堆叠晶体管的拟议的8T SRAM细胞的性能。在22 nm技术节点时,发现基于FIN-FET的8T细胞的功耗为572 PW,与基于CMOS的8T细胞相比,该因子几乎降低了一个因子。此外,对于基于FinFET的新型8T SRAM细胞在22 nm技术节点的情况下,发现功耗被发现减少了一倍。𝟓×𝟏𝟎𝟏𝟎𝟐𝟐𝟐。WSNM,HSNM和RSNM的8T SRAM细胞在0.9 V电压电压下观察到具有FinFET逻辑的8T SRAM细胞的240 mV,370 mV和120 mV。与常规的6T填充细胞相比,所提出的细胞显示了20%,5.11%和7%的WSNM,HSNM和RSNM,这是分数的。还分析了SNM的灵敏度,并报告了温度变化的敏感性。此外,获得的结果证实了所提出的SRAM细胞的鲁棒性,与近期作品相比。
摘要:本文重点介绍一种应用于交通系统的原始控制方法,该系统包括聚合物电解质膜燃料电池 (PEMFC) 作为主要能源,超级电容器 (SC) 作为储能备用。为了将超级电容器与嵌入式网络的直流总线连接起来,使用了双端口双向 DC-DC 转换器。为了控制系统并确保其稳定性,通过采用微分平坦算法的非线性控制方法开发了网络的降阶数学模型,这是一种有吸引力且有效的解决方案,通过克服交通系统电力电子网络中普遍遇到的动态问题来使系统稳定。系统控制的设计和调整与平衡点无关,在该平衡点上,所提出的控制律考虑了 PEMFC 主电源、超级电容器储能装置和负载之间的相互作用。除此之外,还实现了负载功率抑制的高动态性,这是本文的主要贡献。为了验证所开发控制律的有效性,在实验室中实现了小型实验测试台,并在 dSPACE 1103 控制器板上实现了控制律。实验测试使用 1 kW PEMFC 源和 250 F 32 V SC 模块作为储能备份进行。最后,根据在驾驶循环中测量的实际实验结果验证了所提出的控制策略的性能,包括电动模式、骑行和再生制动模式。
摘要:内存及其数据通信在决定处理器的性能中起着至关重要的作用。为了获得高性能计算机,内存访问必须同样更快。在本文中,使用Set/Reset的双端口存储器是使用量子点蜂窝自动机(QCA)中的多数选民设计的。双端口存储器由基本功能块组成,例如2至4解码器,控制逻辑块(CLB),地址检查器块(ACB),内存单元格(MC),数据路由器块和输入/输出块。这些功能单位是使用三输入多数选民构建的。QCA是纳米级数字组件设计的最新技术之一。在qcadesigner 2.0.3中已经模拟和验证了双端口存储器的功能。一种称为逻辑交叉的新型跨界方法用于改善拟议设计的面积。逻辑交叉在适当的时钟区域分配的支持下进行数据传输。基于逻辑交叉的QCA布局是根据细胞计数和数量的数量来优化的。据观察,分别是29.81%,18.27%,8.32%,11.57%和3.69%是解码器,ACB,CLB,数据路由器和存储单元中细胞数量的改善百分比。另外,在解码器,ACB,CLB,数据路由器和存储器单元的区域中,可实现25.71%,16.83%,8.62%,4.74%和3.73%的改进。除了提出的使用逻辑交叉的提议的双端口存储器外,该区域的改善增长了8.26%;由于其构建所需的细胞数量减少了8.65%,因此这可能是可能的。此外,使用RCViewer+工具获得了RAM的量子电路。量子成本,恒定输入,门的数量,垃圾输出和总成本分别为285、67、57、50和516。
反馈放大器双端口网络:阻抗参数、导纳参数、混合参数、传输参数。理想的反馈放大器:增益稳定性、信噪比、对增益和带宽的影响。反馈放大器的类型;负载效应。实际反馈放大器:电压放大器、跨导纳放大器、跨阻抗放大器、电流放大器、稳定性预测、频率响应。
● 1GbE Intel (Dual) Powerville Troi-Stony Dual port 1Gb Base-T adapter – FH ● 1GbE Intel (Quad) Powerville Lore-Stony Quad port 1Gb Base-T adapter – FH ● 1GbE Broadcom (Dual) 5720 Bashir Dual port 1Gb Base-T adapter – FH ● 1GbE Broadcom (Quad) 5719 Cardassia Quad port 1GB基本-T适配器 - FH●FC8 Emulex(双)土星野火双端口FC8 SFP+适配器 - FH
标识符 公司 测试设置 Pro Rev.1+ 类型 大小 TS/OC/AP 引脚 备注 74LS170 74170/670 X 4 x 4 16 OC 14 74LS670 74170/670 X 4 x 4 16 TS 14 TC4036 东芝 - 外部 4 x 8 32 TS 24 外部定义可用 TC4039 东芝 TC4039 X 4 x 8 32 TS 24 请勿将 TC4039 与 TMS4039 混合使用 74172 - 外部 8 x 2 16 TS 24 双端口,使用端口 2 进行测试,参见 TTL 测试,外部。定义。可用。
网络定理、网络图、节点和网格分析。时域和频域响应。镜像阻抗和无源滤波器。双端口网络参数。传递函数、信号表示。电路分析的状态变量法、交流电路分析、瞬态分析。逻辑系列、触发器、门、布尔代数和最小化技术、多振荡器和时钟电路、计数器环、波纹。同步、异步、上下移位寄存器、多路复用器和多路分解器、算术电路、存储器、A/D 和 D/A 转换器。调制指数、频谱、AM 生成(平衡调制器、集电极调制器)、幅度解调(二极管检测器其他形式的 AM:双边带抑制载波、DSBSC 生成(平衡调制器)、单边带抑制载波、SSBSC 生成和相位调制、调制指数。
PowerStore 的数据路径包括硬件和软件算法,它们协同工作以尽可能高效地接收和存储数据。PowerStore 的动态弹性引擎 (PowerStore DRE) 自动使用设备内的驱动器,使用系统中的所有驱动器创建适当的冗余。PowerStore DRE 支持单驱动器和双驱动器弹性。许多技术最大限度地减少了数据减少对性能的影响。写入缓存到双端口 NVRAM 驱动器,除使用镜像 DRAM 的入门级 PowerStore 500T 外,所有型号的两个节点都可以访问这些驱动器。压缩是在硬件中进行的,系统将写入以完整的 2 MB 条带形式分阶段到系统中的驱动器。重复数据删除以 4 KB 的粒度运行,并且在设备中的节点之间是全局的。
与同等的 ProASIC3 器件相比,ProASIC3L 系列 Microchip Flash FPGA 可大幅降低动态功耗 40%,静态功耗 50%。这些节能效果与性能、密度、真正的单芯片、低至 1.2V 的 I/O 操作、可重新编程性和高级功能相结合。使用 Flash*Freeze 技术,用户可以即时关闭动态电源并将器件切换到静态模式,而无需关闭时钟或电源,同时保留器件的内部状态。• 逻辑密度从 7K LE 到 35K LE • 1 Kbit 片上可编程非易失性 FlashROM 存储器 • 1.2V–1.5V 操作 • 基于最多 6 个集成 PLL 的时钟调节电路 • 最多 504 Kbit 的真正双端口 SRAM • 最多 620 个用户 I/O • 最佳设计安全性