2。抑制光腔的主方程式可以将Fabry-Perot腔建模为由高反射镜制成,并具有带有固定间距的完美镜子。显然,存储在该腔内的光子将逐渐泄漏出部分反射镜,从而导致内部的状态发生变化。这个过程由主方程描述,就像原子耦合到场的原子一样,由光学Bloch方程描述。在此问题中,我们探索了单个模式腔的简单推导。让A和A†描述腔体内的光学感兴趣模式,具有特征性能量hΩ,由Hamiltonian H 0 =âHΩA†a描述。让| ψ)是最初的空腔状态。让我们假设光子以与腔体和γ的光子数成正比的速率泄漏出来,这参数化了泄漏镜的泄漏。因此,光子泄漏
极紫外光刻 (EUVL) 是最有前途的技术之一,它可将半导体器件制造的极限扩展到 50 纳米及以下的临界尺寸 [1]。EUVL 需要制造反射掩模,它不同于紫外可见光光刻技术所用的传统透射掩模。极紫外 (EUV) 掩模由一个 EUV 波长的反射镜组成,反射镜上沉积了吸收图案堆栈。干涉镜由高折射率和低折射率材料的交替堆栈制成,通常是沉积在基板顶部的 40 个 Mo/Si 双层。通过调整 Mo 和 Si 层的厚度,可以针对 13.5 纳米的波长优化反射率。对于“双层工艺” [2],吸收图案堆栈由缓冲层顶部的导电吸收层制成,缓冲层用作蚀刻停止层以及吸收层修复步骤中的保护层。过去几年,人们评估了多种材料(Ti、TiN、Al-Cu、TaSi、Ta、TaN、Cr)[2–4] 作为 EUV 掩模的导电吸收材料的可能性。图 1 描述了这种基本的减法 EUV 掩模工艺流程,其中采用了“双层”吸收堆栈。
摘要 较高的视线指向精度是提高光电干扰吊舱激光对抗能力的前提。传统光电吊舱中电视跟踪时延降低了系统相位裕度、系统稳定性及视线指向精度。针对这一不足,在两轴四框架结构的内框架位置环中引入归一化LMS算法来补偿电视摄像机时延,使吊舱避免系统相位裕度降低,同时采用快速反射镜系统来提高视线指向精度。首先,提出一种归一化LMS算法;其次,设计了一种外框架模拟控制器和内框架滞后超前控制器的复合控制结构;最后,分析了FSM波束控制精度。实验结果表明,归一化LMS算法几乎没有时延;而且,其方位角和俯仰波束控制精度较传统光电吊舱分别提高15倍和3倍。
晶格间距比较器由美国国家标准与技术研究所建立,用于测量近乎完美的晶体之间的晶格间距差异。文中详细描述了晶格间距比较器,晶格间距差异是从测量到的不同晶体的布拉格指数差异推断出来的。比较器是一个采用近乎无色散几何结构的晶体光谱仪。它有两个 s 射线源、两个探测器和一个允许第二个晶体样品远程交换的反射镜。一个灵敏的异差干涉仪用光学多边形校准,用于测量布拉格角。晶体的厚度几乎相等,因此记录的轮廓呈现出均匀的振荡,允许
当定制至关重要时,光学参考腔 (ORC) 系列就是我们的解决方案。您可以从出色的适配、辅助仪器和服务组合中进行选择,并从我们设计多代超稳定激光系统的经验中获益。ORC 系列是法布里-珀罗型腔,其谐振腔垫片由超低膨胀玻璃 (ULE) 制成。腔体安装在密封真空外壳中,具有出色的温度稳定性,可实现低频率漂移。紧凑的设计确保最小的空间需求。ORC-Cubic 可作为 6U、19 英寸机架模块使用。它基于国家物理实验室授权的刚性安装的立方体垫片。ORC-Cylindric 使用由德国联邦物理技术研究院设计的圆柱形垫片,水平安装在四个支撑点上。在这里,机械锁定机制确保了便携性。有各种附加组件和选项可供定制:镜面基底有 ULE 或熔融石英 (FS) 两种,镜面涂层可以是离子束溅射 (IBS) 或晶体 (XTAL),当低热噪声至关重要时,需要后者。高反射涂层适用于很宽的波长范围,也可作为双重或三重高反射镜。输入耦合、PDH 锁定和输出监控模块可以牢固地安装到腔体上,从而省去了运输后的繁琐重新调整。每个系统都在组装过程中经过烘烤。内置的 NTC 和 Peltier 元件可通过真空馈通装置接触,从而允许在热膨胀系数 (CTE) 的零交叉处工作。可根据要求提供 CTE 特性。两种腔体也可不带外壳。
未来战略性 X 射线天文学任务(如 AXIS [ 1 ])建议将大收集面积反射镜与大型、快速、宽视场成像仪相结合。高帧速率对于最大限度地减少点源的堆积影响以及减轻粒子背景对微弱弥散气体研究的影响至关重要。同时,还必须保持低噪音和出色的软 X 射线能量响应以满足关键的科学目标。除了所需的帧速率外,最先进的 CCD 几乎能够提供此类任务的所有关键性能指标。大型探测器的快速帧速率可带来非常高的有效像素速率。我们斯坦福大学的团队正在与麻省理工学院 (MIT) 和麻省理工学院林肯实验室 (MIT-LL) 合作,通过多管齐下的方法解决这一技术差距。为了实现更高的帧速率,我们正在努力提高单个输出的读出速度和每个 CCD 可以并行运行的输出数量。图 1 显示了适用于 AXIS 焦平面的可能 CCD 模块概念。单个输出的速度提高源于 CCD 输出级优化、通过使用专用 ASIC 减少寄生输出负载以及对视频波形使用数字信号处理。读出 ASIC 还允许我们以较小的占用空间和适中的功耗并行操作多个输出。我们还在研究 MIT-LL 制造的一种新型探测器技术,即单电子灵敏读出(以下简称 SiSeRO),虽然它还不能达到单电子噪声性能,但为实现极低噪声、高速 X 射线探测器提供了一条有希望的途径。
Muhammad Arif bin Jalil物理系,马来西亚Teknologi Universia,81310 Johor Bahru,Johor,Malaysia,马来西亚摘要:创建的第一个连续波(CW)激光是He-ne Laser。Ali Javan和他的同事W. R. Bennet和D. R. Herriott在Maiman宣布发明了脉冲红宝石激光器后几个月透露了CW He-Ne Laser的生产。霓虹灯原子在此四级气体激光器中被氦原子激发。激光灯是由霓虹灯的原子变化产生的。波长为632.8 nm的红光。除了产生各种紫外线和IR波长外,这些激光器还可能在可见光谱中产生绿色和黄光(Javan的第一个HE-NE在IR在1152.3 nm的IR操作)。可以通过利用用于这些可能的众多可能的激光跃迁之一的高反射镜来在单个波长下以单个波长进行单个波长的输出工作。它们不是具有高功率激光的发电机。在输出光强度(功率水平上的最小抖动)和波长(模式稳定性)方面,这些激光器的极端稳定性可能是其最著名的特征之一。He-Ne激光经常用于稳定其他激光器。它们也用于应用中,例如全息图,其中模式稳定性至关重要。He-Ne激光器一直在市场上占据主导地位,直到1990年代中期为低功率用途制造,例如射程发现,扫描,光学传输,激光指针等。但是,由于成本较低,其他类型的激光器最著名的是半导体激光器似乎在最近的竞争中取得了胜利。[30]关键字:He-ne激光器,能源,增益培养基,吸收,自发发射,刺激发射。
摘要:提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统型数,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换型数,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强等优点。因此,本文将FLC引入高型控制系统,以FLC的输出作为积分器的增益来控制积分器的通断,达到动态切换型数的目的,并在实验中得到成功验证。 IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。另外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型归约算法,即加权梯形Nie-Tan(WTNT)。与传统类型归约算法相比,WTNT具有更快的计算速度和更好的稳态精度,且已成功应用于实时控制系统,有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC及IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度、以及更强的处理不确定性的能力。
摘要:本教程回顾了作者在过去 35 年中对精密空间结构主动控制的贡献。它基于 2022 年 9 月在巴黎举行的 IAC-2022 宇航大会上的 Santini 演讲。第一部分致力于空间桁架的主动阻尼,重点是稳健性。通过使用分散的同位执行器-传感器对来实现保证的稳定性。所谓的积分力反馈 (IFF) 简单、稳健且有效,并且可以使用基于模态分析的简单公式轻松预测性能。这些预测已通过大量实验证实。桁架的阻尼策略已扩展到电缆结构,并已通过实验证实。第二部分解决了隔振问题:将敏感有效载荷与航天器引起的振动隔离开来(即姿态控制反作用轮和陀螺仪的不平衡质量)。讨论了基于 Gough-Stewart 平台的六轴隔离器;再次强调,该方法强调了稳健性。提出了两种不同的解决方案:第一种(主动隔离)使用分散控制器,该控制器具有并置的执行器和力传感器对,并具有 IFF 控制。结果表明,这种特殊的天棚实现方式与传统天棚不同,即使它连接的两个子结构是柔性的(大型空间结构的典型特征),也能保证稳定性。第二种方法(被动)讨论了松弛隔离器的电磁实现方式,其中线性阻尼器的经典阻尼器被麦克斯韦单元取代,导致渐近衰减率为 -40 dB/十倍,类似于天棚(尽管在电子方面要简单得多)。讲座的第三部分总结了最近在柔性镜控制方面所做的研究:(i)由压电陶瓷(PZT)致动器阵列控制的自适应光学(AO)平面镜和(ii)由压电聚合物致动器(PVDF-TrFE)阵列控制的球形薄壳聚合物反射镜,旨在部署在太空中。
摘要:本文提出一种基于区间2型模糊逻辑控制器(IT2FLC)的动态高型控制(DHTC)方法,将其应用于光电跟踪系统,提高稳态精度和响应速度。在传统的多环反馈控制环中加入积分器,可以增加系统类型,从而加快响应速度,提高稳态精度,但存在积分饱和的风险。根据系统状态动态切换类型,可以在保留高型优点的同时避免积分饱和。模糊逻辑控制(FLC)可以根据输入的变化动态地改变输出值,具有响应速度快、处理不确定性能力强的优点。因此本文将FLC引入高型控制系统,利用FLC的输出作为积分器的增益来控制通断,达到动态切换型的目的,并在实验中成功验证。IT2FLC引入了三维隶属函数,进一步提高了FLC处理不确定性的能力。从实验结果来看,与T1FLC相比,IT2FLC处理不确定性的能力明显提高。此外,为了加快IT2FLC的计算速度,本文提出了一种改进的类型降阶算法,称为加权梯形Nie-Tan(WTNT)。与传统降阶算法相比,WTNT具有更快的计算速度和更好的稳态精度,并已成功应用于实时控制系统,具有很好的工程应用价值。最后,为了减少人为因素的干扰,提高系统的自动化水平,采用多种群遗传算法(MPGA)对FLC的参数进行迭代优化,提高了输出精度。在柔性快速反射镜(FFSM)实验平台上,对比了传统控制器、T1FLC和IT2FLC的控制效果,证明了IT2FLC-DHTC系统具有更快的响应性能、更高的稳态精度和更强的处理不确定性的能力。