摘要:通过膦配体将金属配合物与其磷酸反离子连接,为非对称反离子导向催化 (ACDC) 提供了一种新策略。一种简单、可扩展的合成路线可以得到具有手性磷酸功能的膦的金 (I) 配合物。该配合物产生一种催化活性物质,阳离子 Au(I) 中心和磷酸反离子之间具有前所未有的分子内关系。串联环异构化/亲核加成反应展示了将催化剂的两种功能连接在一起的好处,通过在异常低的 0.2 mol % 催化剂负载下实现高对映选择性水平(高达 97% ee)。值得注意的是,该方法还与无银方案兼容。■ 简介
下面我们将证明 TCDC 方法成功应用于 2-炔基烯酮 1 与硝酮 2 的对映选择性串联反应,其中硝酮表现为亲核 1,3-偶极子,得到形式上的 [3+3] 环加成产物 3(方案 1b)。[14] 此外,我们证明这些串联环化/[3+3] 环加成可以作为多组分反应进行,通过羟胺 4 和醛 5 原位形成硝酮。该方法适用于广泛的芳基和烷基取代底物,克服了此类对映选择性反应的一些当前局限性。[14] 该方法依赖于一种新的 CPA-Phos 型配体,在有和没有活化银盐的情况下均可操作。DFT 计算提供了有关新 Au(I) 复合物在此反应中的行为的见解。
a 张振浩博士、Nazarii Sabat 博士、Angela Marinetti 博士、Xavier Guinchard 博士、巴黎萨克雷大学、法国国家科学研究中心、自然化学研究所、UPR 2301, 91198、Gif-sur-Yvette、法国。电子邮件:angela.marinetti@cnrs.fr; xavier.guinchard@cnrs.fr b 张振浩博士、Gilles Frison 博士 LCM、CNRS、巴黎综合理工学院、巴黎综合理工学院、91128 Palaiseau、法国。 c Dr Gilles Frison 索邦大学,法国国家科学研究院,理论化学实验室,75005 巴黎,法国 CPA-Phos 系列新型手性磷酸官能化膦的金(I)配合物可使醛、羟胺和环状炔烯酮之间发生对映选择性多组分反应,生成 3,4-二氢-1H-呋喃并[3,4-d][1,2]恶嗪。这是金(I)催化下高度对映选择性多组分反应的第一个例子。反应在低催化剂负载下进行,产率高,总非对映选择性和对映体过量高达 99%。可应用无银条件。该方法适用范围非常广泛,既适用于脂肪族和芳香族醛和羟胺,也适用于各种环状炔烯酮,以及炔烯酮衍生的肟。据报道,DFT 计算启发了对映体控制途径。
对映选择性金 (I) 催化的挑战显然与活性配合物的线性几何形状有关,并且在许多情况下与对映决定步骤的外层机制有关。尽管如此,近年来可以通过空间拥挤的配体(其形成嵌入远端活性位点的深手性口袋)、双功能膦或可能通过亲金相互作用形成的双核配合物实现高对映选择性。1 另外,Toste 2 引入了手性反离子策略,其中值得注意的是 BINOL 衍生的磷酸盐在涉及阳离子金中间体的反应中充当手性诱导剂。尽管对于磷酸盐阴离子的确切机制和作用存在一些不确定性,但该策略已显示出突出的潜力,并引发了金 3,4 和其他过渡金属催化的重大进展。 5,6 在金 (I) 催化中,首次公开的分子内氢烷氧基化、氢羧化和氢胺化反应迄今为止仍然是反离子策略的主要应用领域,尽管该方法在理论上应该适用于更广泛的反应。值得注意的是,所有涉及对映体决定步骤中紧密离子对的反应都可能适用,包括那些通过碳阳离子中间体与远程中性金 (I) 单元进行的反应。这种情况可以用图 1.1 中的串联杂环化-亲核加成反应来适当地代表。7 在这种情况下以及其他情况下,手性反离子的立体化学控制受到磷酸盐-碳阳离子对的空间排列不明确和灵活的影响。我们认为可以通过以某种方式将磷酸盐反离子束缚在阳离子金复合物上来克服这个缺点(图 1.2b)。将磷酸单元连接到金配体的共价系链可能为关键中间体提供足够的几何约束和分子组织,从而实现有效的立体化学控制。如果正确实施,这种方法可能会突破对映选择性金催化以及更广泛地说对映选择性过渡金属催化中“离子配对策略”的极限。之前已经报道过在分子内嵌入阴离子的过渡金属配合物。然而在这些
) 被用作药物递送系统 (DDS) 中的基质。根据 TMAMA 单元中的反离子类型,它们被分为单药物系统和双药物系统,前者表现为具有氯反离子并负载异烟肼 (ISO) 的离子聚合物,后者的特点是 ISO 负载于自组装 PAS 结合物中。通过测定临界胶束浓度 (CMC) 证实了这些共聚物的两亲性质,显示离子交换后数值增加(从 0.011–0.063 mg/mL 至 0.027–0.181 mg/mL)。自组装特性有利于 ISO 包封,单系统和双系统中的药物负载量 (DLC) 都在 15% 到 85% 之间。体外研究表明 ISO 释放百分比在 16% 到 61% 之间,PAS 释放百分比在 20% 到 98% 之间。采用2,5-二苯基-2H-溴化四唑(MTT)试验进行的基本细胞毒性评估,证实了所研究的系统对人类非致瘤性肺上皮细胞株(BEAS-2B)无毒性,尤其是在同时含有ISO和PAS的双系统的情况下。这些结果证实了聚合物载体在药物递送中的有效性,并展示了其在联合治疗中用于药物递送的潜力。
摘要:能够对多种外界刺激作出反应的多响应性聚合物是具有多种应用前景的材料。本文介绍了一种通过聚甲基丙烯酸甲酯 (PMMA) 的后聚合酰胺化来合成三重响应性(pH、温度、CO 2 )聚(N,N-二乙基氨基乙基甲基丙烯酰胺)的简便方法。与三价反离子([Fe(CN) 6 ] 3 @ )结合,在 pH 为 8 和 9 时都可以实现上限和下限临界溶液温度 (UCST/LCST) 型相行为。PMMA 和基于 PMMA 的嵌段共聚物可通过活性阴离子和受控自由基聚合技术轻松获得,这为基于所开发的功能化方法的各种响应性聚合物结构开辟了道路。该方法还可应用于熔融加工的块状 PMMA 样品,以在 PMMA 表面引入功能性响应部分。
摘要 我们通过全原子分子动力学 (MD) 模拟研究了阳离子和不带电表面活性剂分子及其胶束在金属-水界面上的吸附行为。我们的模拟表明,未聚集的表面活性剂分子在金属表面强烈吸附,没有任何自由能垒。胶束的吸附行为则截然不同。阳离子表面活性剂的胶束在吸附时会经历一个长距离自由能垒,这是因为这些胶束周围存在反离子和水合水的环,当胶束接近表面时,这些环会受到干扰。不带电表面活性剂的胶束周围没有反离子的环,因此表现出无障碍的吸附自由能曲线。阳离子和不带电表面活性剂的胶束都会通过在金属表面解体而强烈吸附。在崩解状态下,组成胶束的分子重新排列,以实现分子轴与表面平行的平躺配置或分子轴与表面垂直的直立配置。
摘要:用传统质谱法分析核酸时,反离子会造成质量不均匀,限制可分析的 DNA 大小,因此分析起来十分复杂。在这项研究中,我们使用电荷检测质谱法分析兆道尔顿大小的 DNA,从而克服了这一限制。使用正模式电喷雾,我们发现 DNA 质粒的电荷分布截然不同。低电荷群体的电荷像紧凑的 DNA 折纸一样,而高电荷群体的电荷分布范围很广。对于高电荷群体,测量质量与 DNA 序列预期质量之间的偏差始终在 1% 左右。对于低电荷群体,偏差更大且变化更大。高电荷群体归因于随机卷曲配置中的超螺旋质粒,其宽电荷分布是由随机卷曲可以采用的丰富多样的几何形状造成的。高分辨率测量表明,随着电荷的增加,质量分布会略微向低质量方向移动。低电荷群体归因于质粒的浓缩形式。我们认为凝聚形式是由熵捕获引起的,其中随机线圈必须经历几何变化才能挤过泰勒锥并进入电喷雾液滴。对于较大的质粒,剪切(机械破碎)发生在电喷雾期间或电喷雾界面。降低盐浓度可以减少剪切。■简介质谱 (MS) 在核酸表征中发挥着重要作用。1、2 电喷雾和基质辅助激光解吸/电离 (MALDI) 都已用于将 DNA 和 RNA 离子引入气相进行分析,但 MALDI 与飞行时间 (TOF) MS 的组合应用最为广泛。例如,MALDI-TOF 继续用于表征单核苷酸多态性 (SNP),这可提供有关疾病易感性遗传特征的重要信息。对于突变和 SNP 的分析,只需要分析小于 25 nt 的小寡核苷酸(核苷酸)。这是幸运的,因为反离子(通常是 Na +、K + 或 Mg 2+)与 DNA 和 RNA 的高电荷磷酸骨架结合,导致峰宽和灵敏度降低。已经开发出几种方法来脱盐核酸。3、4 然而,由金属离子加合引起的异质性会随着尺寸的增加而增加,并且由于电荷状态分辨率的丧失,常规 MS 不再可能分析兆道尔顿大小的 DNA 和 RNA 物种。另一方面,新型疫苗和基因疗法等新兴疗法携带着大量的遗传物质。基因组完整性对于有效的治疗是必不可少的,对完整基因组的质量测量提供了一种快速而直接的方法来检查缺失和添加。5
钙钛矿结构 [1] 及其几乎无限适应性的衍生物阵列,必须算作材料科学中最重要的结构之一,其基本的 ABX 3(A = 大阳离子;B = 较小的阳离子;X = 阴离子)结构原型有助于铁电、[2] 压电、[3] 超导、[4] 光化学 [5] 和许多其他重要的技术特性。近来,随着混合 [3,6–8] 或全无机卤化物钙钛矿 ABX [9,10] 结构制造技术的快速发展,人们对钙钛矿的兴趣进一步增加。其中 A 是有机或碱金属反离子,B 通常是铅或锡,X 是卤素,这使得具有光学和光伏特性的材料 [11,12] 可用于太阳能电池、[13,14] 离子导电材料、[15] 超级电容器 [16] 和其他储能设备 [17]。然而,块状卤化物钙钛矿具有反应性,容易发生表面水合 [18] 相变 [19,20] 和高缺陷密度 [21],从而降低了其性能和寿命。因此,人们开发出了降维卤化物钙钛矿,重点关注胶体、[22] 二维、[23] 量子点、[24] 以及薄膜中的分子级 [25] 制备。虽然在如此低的维度上形成钙钛矿可以增强一些理想的特性,但也会增加其降解的趋势,尽管表面钝化可以减少薄膜中的分解。[26] 尽管如此,维度在纳米尺度上仍然是设计和微调卤化物钙钛矿物理性质的关键,因为它在决定电子结构方面起着关键作用。[27]
为了降低 RO 工艺的能量需求,研究人员还在研究其他技术,如纳滤。[3–5] 在这些技术中,电容去离子 (CDI) 在能耗、工艺简单、减少结垢和低成本方面具有众多优势。[6] 对于 CDI,不需要膜和压力。盐通过电场去除,并以双电层 (EDL) 的形式储存在多孔介质中以产生淡水。电容技术的传统电极依赖于高导电性和高表面积的碳基材料。[7–10] CDI 的工作原理与流体电化学电容器相同;[11] 对浸入含有电解质的溶液中的两个多孔电极施加电压,离子被吸引到电极表面并形成 EDL。这种机制可以在不施加过压的情况下从水中去除盐分,由于没有机械运动部件,因此维护工作量较少。此外,能量不会在此过程中损失,而是以电化学能的形式储存在电极内部。因此,它可以以静电荷存储特有的极高效率进行回收。遗憾的是,这项技术的现状与更成熟的反渗透技术的性能还相差甚远。[7,12] 必须开发出具有高除盐率、低能量损失和可扩展工艺的新材料。在这种情况下,具有净表面电荷的功能化材料引起了科学界的极大兴趣。[13–15] 众所周知,控制表面电荷的种类可以提高 CDI 设备的脱盐性能,因为这与微调零电荷电位 (V PZC ) 的可能性直接相关。 [16,17] V PZC 是必须施加在电极上以确保其表面电中性的电位。通常,每种材料都有自己的 V PZC,这取决于其表面存在的化学物质。例如,由高氧化度碳原子构成的氧化石墨烯 (GO) 在水中始终显示负的 z 电位,因此如果用作 CDI 电极材料,则具有正的 V PZC。考虑电极 V PZC > 0 的情况将有助于阐明这一概念。在平衡状态下,该电极的表面将充满正电荷。然后,如果施加大于 V PZC 的电压,就会发生称为“共离子驱逐”的现象。从 0 到 V PZC 的电位将用于排出表面上自然存在的正电荷(同离子),而其余部分( V − V PZC )将用于存储负电荷(反离子)。类似的推理