目前,SpaceX 对猎鹰 9 号和重型火箭的第一级采用返回发射场 (RTLS) 和近程着陆 (DRL) 方法,这需要大量燃料用于减速和着陆。涡扇发动机驱动的返回飞行技术(如带翼 LFBB)效率更高,但需要额外的推进系统及其燃料,这也会增加该级的惰性质量。一种完全不同的创新方法可使性能更好的 RLV 级返回,即获得专利的“空中捕获” (IAC) [1]:带翼可重复使用级将在空中被捕获并拖回发射场,此阶段无需任何自身的推进系统 [2]。图 1 显示了可重复使用级的完整操作 IAC 循环示意图。发射器升空时,捕获飞机正在近程会合区等候。在完成 MECO 后,可重复使用的带翼级与运载火箭的其余部分分离,然后沿弹道飞行,很快到达密度更大的大气层。在 20 公里左右的高度,它减速至亚音速,并在滑翔飞行路径中迅速下降。此时,可重复使用的返回级通常必须启动最后的着陆方法或必须启动其辅助推进系统。不同的是,在空中捕获方法中,可重复使用的返回级由一架装备齐全的捕获飞机(很可能是全自动的,也可能是无人驾驶的)等待,该捕获飞机提供足够的推力来牵引具有限制升阻比的带翼发射级。整个机动过程在几千米的高度完全亚音速 [3]。成功连接两辆运载火箭后,带翼可重复使用的返回级由大型运载飞机拖回发射场。靠近机场时,返回级从牵引机上释放,并像传统滑翔机一样自动滑行到着陆跑道。
o 战略自主:保证欧洲自主制造的日常太空进入能力,实现太空“运输”和“返回”,包括未来需要时载人航天运输能力的前景。 o 可负担性和竞争力:最大限度地发挥欧洲产品的协同作用、共性和平衡的技术构建模块的跨机构或私人资助产品的维持。 o 产业多样性:利用充满活力的欧洲科学和工业生态系统,依靠传统参与者和新参与者现有的工业优势的技能和手段(生产或测试设施、硬件)。 o 商业化:最大限度地利用快速增长的太空利用商业化,在欧洲共享公共技能和地面基础设施,重点发挥欧空局和国家机构作为降低技术活动风险的推动者以及采购未来服务的基础客户的作用。 o 创新提升竞争力:促进创新和引进突破性技术以提高竞争力,承担和激励一定程度的风险,提高环境兼容性,实现碳中和。 o 效率:依靠敏捷/精益的项目管理方法,该方法基于机构、学术或工业界、新手或有经验的多方参与者之间的协同工作。 o 合作:尽最大可能促进成员国跨维持和欧洲合作,在整个欧洲采取竞争性但包容和协作的方式,在现有工业专业知识的传统和卓越基础上联合起来,同时为新的工业参与者提供机会。 具有以下特点的欧洲产品系列: o 两级入轨以提高竞争力,减少级数和发射系统的复杂性。 o 最大限度地发挥发射系统之间的协同作用,通过部件、发动机和级级的通用构建模块实现广泛的模块化。 o 基于互补推力级发动机的全液体推进,第一级和上面级使用一对推进剂。 o 完全可重复使用,以提高竞争力和发射服务灵活性,重点关注低级和高级可重复使用性,以超越全球竞争对手。 o Vega C 和 Ariane 64 的性能范围,具有载人航天运输的潜力。 发射系统系列由与整个发射系统系列兼容的任务扩展模块系列补充,从多个有效载荷适配器到发射级,用于: • 扩大发射服务范围,针对从微型到重型的各种航天器,在多个轨道上精确和高效地发射。• 扩大航天运输新市场的准入,满足在轨服务或探索需求。