通过材料厚度非线性传输和 Z 扫描技术,研究了用 775 nm、1 kHz 飞秒激光脉冲激发的多晶硒化锌 (ZnSe) 的光学非线性。测得的双光子吸收系数 β 与强度有关,推断 ZnSe 在高强度激发下也与反向饱和吸收 (RSA) 有关。在低峰值强度 I < 5 GW cm –2 时,我们发现 775 nm 处的 β = 3.5 cm GW –1。研究了宽蓝色双光子诱导荧光 (460 nm-500 nm) 的光谱特性,在带边附近表现出自吸收,而上能级寿命测得为 τ e ~ 3.3 ns。在光学腔内泵浦 0.5 毫米厚的多晶 ZnSe 样品时观察到受激辐射,峰值波长 λ p = 475 nm 时,谱线明显变窄,从 Δ λ = 11 nm(腔阻塞)到 Δ λ = 2.8 nm,同时上能级寿命也缩短。这些结果表明,在更优化的泵浦条件和晶体冷却下,多晶 ZnSe 可能通过 λ = 775 nm 的双光子泵浦达到激光阈值。
连续波 (cw) 光子激发电子能量损失和增益光谱 (sEELS 和 sEEGS) 用于对纳米棒天线中光激发局部表面等离子体共振 (LSPR) 模式的近场进行成像。配备纳米操作器和光纤耦合激光二极管的光学传输系统用于同时照射 (扫描) 透射电子显微镜中的等离子体纳米结构。纳米棒长度不断变化,使得 m = 1、2 和 3 LSPR 模式与激光能量共振,并测量这些模式的光激发近场光谱和图像。还研究了各种纳米棒方向以探索延迟效应。光学和电子束模拟用于合理化观察到的模式。如预期的那样,奇数模式在光学上是明亮的,并导致观察到的 sEEG 响应。 m = 2 暗模式不会产生 sEEG 响应,但是,当倾斜到延迟效应起作用时,sEEG 信号就会出现。因此,我们证明了 cw sEEGS 是成像任一奇偶性全套纳米棒等离子体模式近场的有效工具。
K β x 射线发射光谱是分析 3 d 过渡金属系统电子结构及其超快动力学的有力探针。选择性增强特定光谱区域将提高这种灵敏度并提供全新的见解。最近,我们报道了使用 x 射线自由电子激光观察和分析了 Mn 溶液中 K α 放大的自发 x 射线发射以产生 1 s 芯空穴粒子数反转 [Kroll 等人,Phys. Rev. Lett. 120,133203 (2018) ]。要将这种新方法应用于化学上更敏感但更弱的 K β x 射线发射线,需要一种机制来胜过 K α 发射的主导放大。本文报告了使用两种颜色的 x 射线自由电子激光脉冲对 NaMnO 4 溶液中种子放大 K β x 射线发射的观察结果,一种用于产生 1 s 核心空穴粒子数反转,另一种用于种子放大 K β 发射。将观察到的种子放大 K β 发射信号与相同立体角中的传统 K β 发射信号进行比较,我们获得了超过 10 5 的信号增强。我们的发现是增强和控制 K β 光谱选定最终状态的发射的第一步,可应用于化学和材料科学。
b'在室温下,已证实 GaN 半导体中 1.5 \xce\xbc m 电信波长的稀土激光作用。我们已报道了在上述带隙激发下,通过金属有机化学气相沉积制备的 Er 掺杂 GaN 外延层产生的受激发射。使用可变条纹技术,已通过发射强度阈值行为作为泵浦强度、激发长度和光谱线宽变窄的函数的特征特征,证实了受激发射的观察。使用可变条纹设置,在 GaN:Er 外延层中已获得高达 75 cm 1 的光增益。GaN 半导体的近红外激光为光电器件的扩展功能和集成能力开辟了新的可能性。'
* 通讯作者:Daniel A. Orringer,医学博士,纽约大学,530 First Ave.,SKI 8S,纽约,NY 10016;电话 212-263-0904,Daniel.Orringer@nyulangone.org。‡ 现地址:美国加利福尼亚州旧金山市加利福尼亚大学旧金山分校神经外科系 作者贡献:TCH、SC-P. 和 DAO 构思了这项研究、设计了实验并撰写了论文,并得到了 BP、HL、ARA、EU、ZUF、SL、PDP、TM、MS、PC 和 SSSK 的协助。作者 CWF 和 JT 制作了 SRH 显微镜。TCH、ARA、EU、AVS、TDJ、PC 和 AHS 分析了数据。TDJ 和 TCH 进行了统计分析。 DAO、SLH-J.、HJLG、JAH、COM、ELM、SES、PGP、MBS、JNB、MLO、BGT、KMM、RSD、OS、DGE、RJK、MEI 和 GMM 提供了手术标本以供成像。所有作者均审阅并编辑了手稿。