铜与锡(8%至16%)合成时,第三个元素(如镉,铍,磷,硅等)的比例很小。称为青铜。青铜是根据添加到铜和锡形成合金的第三个元素的名称。例如,当元素是磷时,合金称为磷青铜。如果第三个元素是硅或镉,则合金分别称为硅青铜或镉青铜。与铜相比,所有青铜器具有高机械强度,但电导率较低。锡比锌更具耐腐蚀性。因此,青铜器比黄铜更不受腐蚀。镉青铜用于接触导体和换向器段。Beryllium青铜的机械强度高于镉青铜,用于使电流载有弹簧,滑动触点,刀开关刀片等。
缩写 ANOVA:方差分析 ASTM:美国材料与试验协会 BOD生物需氧量 BOF:“Bijzonder Onderzoeks Fonds”:弗拉芒政府研究基金 CI:腐蚀指数 COD:化学需氧量 CRS:耐腐蚀钢 DC:直流电 IACS:国际船级社协会 IMO:国际海事组织 KdG:“Karel De Grote”高等教育学院 MARPOL:国际防止船舶污染公约 NKK:日本海事协会 OBO:油类散装矿石 OCAS:位于比利时的钢铁应用研究中心。它是弗拉芒地区和安赛乐米塔尔的合资企业。 PSPC:防护涂层性能标准 TSCF:油轮结构合作论坛 VLCC:超大型原油运输船 简介 大气腐蚀导致金属表面退化是许多暴露在外的钢结构(如桥梁、储罐和管道)的众所周知的问题。将海水引入其中会导致更具侵蚀性的环境,并加剧腐蚀效应。商船航行于世界各地的海洋,在没有货物或船舶仅部分装载时,其压载舱中装有海水,以确保机动性并控制吃水、应力和稳定性。压载舱对于船舶的运行必不可少,但它们易受腐蚀这一事实对船舶来说是一个明显的问题。第一
招聘广告 爱尔兰戈尔韦大学工程/机械工程学院现招聘全职、固定期限博士后研究员/研究助理(先进制造(3D 打印)专业),欢迎符合条件的候选人申请。 大学致力于抓住混合工作机会,建设更具活力、更灵活、反应更快的大学,同时保持强大的教学、学习、研究标准和高生产力。大学将继续成为所有员工的主要工作场所,但个人混合安排请求可与直线经理结合大学混合工作政策进行审查。 该职位由爱尔兰企业局/建筑创新中心资助,有效期从 2024 年 11 月 1 日起至合同结束日期 2025 年 6 月 30 日。 项目信息: 背景:建筑行业依赖水泥基材料,但面临着延展性低、抗拉强度弱和易开裂等挑战。传统钢筋易受腐蚀,需要精确放置以防止水泥基质开裂时失效。聚合物/复合材料增强材料是一种耐用、无腐蚀的替代品。塑料和复合材料废弃物(如包装膜和工业残余物,如风力涡轮机叶片、航空航天部件)对环境污染贡献巨大。填埋会破坏生态系统,而焚烧会释放温室气体和毒素,这凸显了可持续废物管理解决方案的必要性。
工业储罐是用于储存液体,气体和化学物质的关键基础设施组件。随着时间的流逝,这些坦克容易容易腐蚀,这威胁了其结构完整性,如果未被发现,可能会导致严重的安全性和财务风险。传统检查方法,例如视觉检查和超声测试,通常在可靠性方面缺乏,尤其是对于难以到达的区域的早期腐蚀[1-6]。根据材料的环境退化手册[7],美国每年花费约3000亿美元,约占其预算的3%,占相关费用[8]。这使腐蚀成为金属和混凝土结构上恶化的最昂贵原因[9]。近似于与结构失败相关的成本的90%与腐蚀有关[10]。同样,在过去的50年中,已经进行了几项全国性的腐蚀研究,并且都达到了相当于每个国家国内生产总值(GDP)约3-4%的腐蚀成本。[11]这些结构中腐蚀的及时检测和减轻腐蚀对于上述结构的寿命和功能至关重要[12-15]。LIDAR和HSI等新兴技术提供了非侵入性的高分辨率检查功能。这些传感器技术能够检测腐蚀,同时还提供了有助于详细结构分析的空间(3D)信息[16]。本文旨在调查LIDAR和HSI在储罐检查中的使用,突出其整合以及使用高级感应技术而不是传统方法的优势[17,18]。此应用并非特定于海上储罐,因为受腐蚀影响的许多其他结构需要恒定的维护和分析(也称为结构性健康监测或SMH),这可能会受到这种技术的积极影响[19,20]。
781-3 动态信息标志。781-3.1 描述:根据合同文件中指定的详细信息提供和安装动态信息标志 (DMS)。781-3.1.1 一般规定:确保所有暴露的材料都具有耐腐蚀性。确保与 DMS 相关的电子设备不受损坏,并防止受潮、受尘、受污和受腐蚀。确保环境磁场或电磁场(包括任何系统组件产生的磁场或电磁场)不会对系统性能产生负面影响。确保系统不会传导或辐射干扰其他电气或电子设备的信号,包括但不限于其他控制系统和数据处理、音频、无线电和工业设备。确保 DMS 外壳符合第四版(2001 年)AASHTO 公路标志、灯具和交通信号结构支撑标准规范及其最新附录的抗疲劳性要求。设计和建造 DMS 单元,使其连续使用至少 20 年,标志结构的设计寿命为 50 年。确保 DMS 的制造、焊接和检验符合现行 ANSI/AWS 结构焊接规范-铝的要求。确保 DMS 及其组件(包括但不限于面板、接线端子和印刷电路板)上的所有标识标记均采用丝网印刷和密封或以其他方式不可擦除,使用的材料和方法由工程师批准。确保设备设计和制造采用最新可用技术,使用最少数量的不同零件、子组件、电路、卡和模块,以最大程度地提高标准化和通用性。确保设计的设备包括无需特殊工具即可进行访问和维护的规定。确保所有组件部件都易于进行检查和维护。提供标记的测试点以检查基本电压。确保所有外部连接都使用连接器终止。将连接器锁定以防止不正确的连接。
行业用作集装箱建筑材料和一部分机器。尽管它们在某些条件下易受腐蚀,尽管具有抗腐蚀的保护性氧气层。寻求保护这些金属,在受限的自旋极化DNP基础下,使用局部密度B3LYP进行了有关铝和锌腐蚀抑制的理论研究,以获得分子PNNT的稳定几何形状。e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。 从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。 通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。 键长和角度的数据表明该分子是金属表面上的四方平面。 Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程e Homo,E Lumo,Energo GAP(ΔE),电子电位的值描述了偶极矩(μ),电负性(χ),全球硬度(η),全局硬度(η),全球亲电性指数(ω),源自捐赠的能量(ε)和ΔEB-D的能量(ΔEB-D)展示了分子和铁表面,包括(ω +)电感功率和(ω-)电载功率。从仿真建模的结果中,物理吸附模式描述为PNNT与金属的相互作用模式。通过福岛函数的结果表明,分子中存在的杂原子,例如氮,硫氧氟和亚甲基(-CH 2-)功能基(-CH 2-)功能组是金属和PNNT分子之间电子捐赠和接受性的选择性的焦点。键长和角度的数据表明该分子是金属表面上的四方平面。Al 40.118 kcal/mol的结合能大于Zn 19.482 kcal/mol表面的结合能,这表明对Al表面的分子Pnnt具有更大的吸附,其中吸附在两个表面上都假定的物理吸附过程