由于溶酶体 β -半乳糖苷酶 (β -gal) 缺乏导致的 GLB1 相关疾病包括两种表型不同的溶酶体贮积症: GM1 神经节苷脂沉积症和 Morquio B 综合征。目前尚无可以预防或逆转疾病进展的获批疗法,因此对患有这些疾病的患者而言,存在着巨大的未满足的医疗需求。 Gain Therapeutics 已应用其创新的专有药物发现平台——定点酶增强疗法 (SEE-Tx TM ),开发小分子结构靶向变构调节剂 (STAR ),以治疗溶酶体贮积症。此类 STAR 可以变构结合并稳定目标突变酶,从而避免其降解并恢复其酶活性。我们在此报告了对先导 STAR 作用机制的最新见解,迄今为止,该药物在 GLB1 相关疾病的体外模型中已显示出良好的效果。事实上,它们以非抑制方式与目标酶结合,并倾向于增加其向溶酶体的输送,大概是通过拯救其免于内质网中的早期降解。最重要的是,它们在体外细胞测定中增强酶活性和底物消耗。总之,这些数据支持并验证了 SEE-Tx TM 作为创新药物发现平台的应用,用于识别用于治疗 GLB1 相关疾病的变构调节剂。
耐甲氧西林金黄色葡萄球菌(MRSA)是一种革兰氏阳性的细菌病原体,继续对我们社会中当前的公共卫生系统构成严重威胁。MRSA中对β-内酰胺抗生素的高度抗性归因于青霉素结合蛋白2a(PBP2A)的表达,这会催化细胞壁交联。根据大量研究报告,已知PBP2A蛋白的活性受到与细胞壁交联的活性位点不同的变构位点的调节。在这里,我们对包含1,3,4-氧化唑核的113种化合物进行了筛选,以设计针对PBP2A变构位点的新共价抑制剂并建立其结构活性关系。在初始筛选中鉴定出的磺酰氧化二唑化合物的立体选择性合成导致细胞抑制活性的最大增强。基于基于PEG的药膏的磺酰基黄烷二唑的化合物,对人细胞的毒性测试低(CC 50:>78μm),不仅在小鼠皮肤伤口感染模型中,而且还针对抗氧蛋白抗抗性临床分离型MRSA(IC 50ous)(IC 50oubious),表现出了有效的抗菌作用。此外,利用LC-MS/MS和硅内方法的其他研究清楚地支持了通过亲核芳香族反应(S NAR)反应(S NAR)的变构位点共价结合机制,以及与PBP2A主要活性位点关闭的关联。
成簇的规律间隔短回文重复序列 (CRISPR) 基因组编辑革命开启了生命科学的新纪元。本文,我们回顾了最先进的计算在 CRISPR-Cas9 革命中的作用,从早期对低温电子显微镜数据的细化到对大规模构象转变的增强模拟。分子模拟报告了 RNA 结合的机制和具有催化能力的 Cas9 酶的形成,这与随后的结构研究一致。受单分子实验的启发,分子动力学为脱靶效应的发生提供了理论基础,而图论则揭示了变构调控。最后,使用混合量子经典方法建立了 DNA 裂解的催化机制。总体而言,分子模拟在理解 CRISPR-Cas9 的动力学和机制方面发挥了重要作用,有助于理解功能、催化、变构和特异性。
成簇的规律间隔短回文重复序列 (CRISPR) 基因组编辑革命开启了生命科学的新纪元。本文,我们回顾了最先进的计算在 CRISPR-Cas9 革命中的作用,从早期对低温电子显微镜数据的细化到对大规模构象转变的增强模拟。分子模拟报告了 RNA 结合的机制和具有催化能力的 Cas9 酶的形成,这与随后的结构研究一致。受单分子实验的启发,分子动力学为脱靶效应的发生提供了理论基础,而图论则揭示了变构调控。最后,使用混合量子经典方法建立了 DNA 裂解的催化机制。总体而言,分子模拟在理解 CRISPR-Cas9 的动力学和机制方面发挥了重要作用,有助于理解功能、催化、变构和特异性。
竞争力 1)新型作用机制 - 变构抑制剂直接与 STAT3-N 末端结构域结合 2)精准医疗策略 - 预测性生物标志物驱动的临床前疗效数据 3)比临床竞争对手(BBI-608、OPB-111077 等)具有更好的疗效和安全性
基于互补氢键碱基配对的核酸高度复杂的分子识别能力导致了 DNA 纳米技术研究领域的迅猛发展。1 通过控制 DNA 杂交和结构以响应诸如 DNA/RNA 结合、pH 变化和光照射等刺激,已经创建了大量 DNA 纳米设备、传感器和分子机器。2 金属离子也可用作外部刺激来调节 DNA 结构和功能,特别是通过利用金属介导的非自然碱基配对。3 通过与桥接金属离子络合,两个相反的配体型核碱基类似物之间形成金属介导的人工碱基对。金属介导的碱基配对通常可以稳定 DNA 双链,从而以金属依赖的方式控制 DNA 杂交。为了通过金属络合有效地切换 DNA 功能,我们最近建立了一种新的概念,即双面 5-修饰嘧啶核碱基的金属介导碱基对切换。 4 – 7 双面碱基,如 5-羟基尿嘧啶 ( U OH ) 4,5 和 5-羧基尿嘧啶 ( caU ) 6 被设计成在金属介导的自碱基对 (例如, U OH – Gd III – U OH ) 中形成
注意:EZH1,增强Zeste同源物1。ezh2,增强Zeste同源物2。eed,胚胎外胚层的发育。suz12,zeste 12的抑制器。H3K27,赖氨酸的组蛋白H3 27。右 - 使用弹弓[Street等。Bolis等人的RNASEQ数据集上的 BMC基因组学(2018)。 nat Comm(2021),Yun等。 Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。BMC基因组学(2018)。nat Comm(2021),Yun等。Oncotarget(2017),Liu等。 nat Comm(2020)。 PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。 癌症Res(2007)]。Oncotarget(2017),Liu等。nat Comm(2020)。PRC2靶基因:87基因多孔抑制特征,源自转移性前列腺肿瘤[Yu等。癌症Res(2007)]。癌症Res(2007)]。
摘要:炎症是由外部刺激触发的一种保护应力反应,5-脂氧合酶(5LOX)作为白细胞素(LTS)炎症途径的有效介质起着关键作用。Nordihydroguaiarovicac(NDGA)充当5LOX的天然正常抑制剂,而3-乙酰基-11-酮β-β-β-β-β-oboswordic Acid(AKBA)起着天然的变构抑制剂的靶向5LOX。但是,抑制的确切机制尚不清楚。在这项研究中,使用高斯加速分子动力学(GAMD)模拟来阐明5LOX上NDGA和AKBA的抑制作用机制。发现正构抑制剂NDGA紧密结合在蛋白质的活性口袋中,占据了活性位点,并通过竞争性抑制抑制了5LOX酶的催化活性。变构抑制剂AKBA的结合引起了远端活性位点的显着变化,从而导致残基168-173从环向α-螺旋变为α-螺旋,以及残基285-290和375-400之间的显着负相关运动,从而减少了这些细分之间的距离。在模拟中,蛋白质稳定构象中的活性腔体积减少,阻碍了底物进入活性腔,从而通过变构效应抑制了蛋白质活性。最终,Markov状态模型(MSM)用于识别和分类蛋白质的亚稳态状态,从而揭示了不同构象状态之间的过渡时间。总而言之,这项研究提供了Akba和NDGA对5LOX抑制机制的理论见解,为开发专门针对5LOX的新型抑制剂提供了新的观点,对抗炎药发育具有潜在的影响。
丙酮酸羧化酶(PC)与多种疾病有关,包括2型糖尿病,癌症和细菌/病毒感染。但是,目前没有能够在体外和体内精确操纵PC活性的分子工具。本论文描述了1,3二取代的咪唑替替替翁的鉴定和表征,是金黄色葡萄球菌PC的新型有效,选择性和可渗透的变构抑制剂。基于动力学,结构和生物物理数据,假设这类抑制剂可以在PC上的非催化“ EXO结合”位点结合。据报道,此EXO结合位点对于催化至关重要,但以前尚未被认为是可药物的位置。本论文还表明,与未激活的PC相比,变构激活的PC对小分子抑制的敏感性明显较小。这一发现为针对人类PC的小分子抑制剂的发展提出了一个重要的新考虑。由于人类PC需要通过乙酰-COA激活催化活性,因此必须针对PC的变构激活形式进行未来的药物发现工作。最后,提供了体外证据,以反驳最近的说法,即两种天然产物Erianin和Anemoside B4是人类PC的抑制剂。本文提交了一个战略框架,以推动针对人类PC的药物发现。它概述了优化的筛选程序,并探讨了鉴定激活人PC抑制剂的可能途径。总体而言,这项工作大大提高了针对人PC的化学探针的开发,并最终有助于扩大用于研究PC在疾病中作用的可用工具包。