在本补充材料中,我们提供了更多细节来支持正文中提出的结果。在 SM1 节中,我们回顾了当波导模式具有带隙时光子介导相互作用可调谐性的物理起源。然后,在 SM2 节中,我们总结了变分量子本征求解算法的关键步骤(SM2 A),描述了所考虑的目标模型的属性(SM2 B),解释了文献中通常使用的不同假设的结构(SM2 C),详细介绍了我们用于获得正文结果的优化协议(SM2 D),并评论了其他可能用于对我们的结果进行基准测试的品质因数(SM2 E)。最后,在 SM3 节中,我们讨论了用于获得正文图 3 的误差模型的细节。还请注意,用于重现手稿结果的所有代码都可以在 https://github.com/cristiantlopez/Variational-Waveguide-QED-Simulators 中找到。
本文介绍了二次量子变分蒙特卡罗 (Q 2 VMC) 算法,这是量子化学中的一种创新算法,可显著提高求解薛定谔方程的效率和准确性。受虚时间薛定谔演化的离散化启发,Q 2 VMC 采用了一种新颖的二次更新机制,可与基于神经网络的假设无缝集成。我们进行了大量的实验,展示了 Q 2 VMC 的卓越性能,在跨各种分子系统的波函数优化中实现了更快的收敛速度和更低的基态能量,而无需额外的计算成本。这项研究不仅推动了计算量子化学领域的发展,还强调了离散化演化在变分量子算法中的重要作用,为未来的量子研究提供了一个可扩展且强大的框架。
摘要 — 心理模拟是目标导向行为的关键认知功能,因为它对于评估行为及其后果至关重要。当给定一个自我生成或外部指定的目标时,通过心理模拟从其他候选中选择最有可能实现该目标的一系列动作。因此,更好的心理模拟会带来更好的目标导向行动计划。然而,开发心理模拟模型具有挑战性,因为它需要了解自我和环境。本文研究了如何通过动态组织自上而下的视觉注意力和视觉工作记忆来在心理上生成机器人的充分目标导向行动计划。为此,我们提出了一种基于变分贝叶斯预测编码的神经网络模型,其中目标导向行动计划由潜在意向空间的贝叶斯推理制定。我们的实验结果表明,出现了具有认知意义的能力,例如对机器人末端执行器(手)的自上而下的自主注意以及无遮挡视觉工作记忆的动态组织。此外,我们对比较实验的分析表明,引入视觉工作记忆和使用变分贝叶斯预测编码的推理机制显著提高了规划充分的目标导向行动的表现。
变异量子算法(VQA)被认为是嘈杂的中间尺度量子(NISQ)设备的有用应用。通常,在VQA中,参数化的ANSATZ电路用于生成试验波函数,并且对参数进行了优化以最大程度地减少成本函数。另一方面,已经研究了盲量量计算(BQC),以便通过使用云网络为量子算法提供安全性。执行量子操作能力有限的客户端希望能够访问服务器的量子计算机,并且BQC允许客户端使用服务器的计算机,而不会泄漏客户端的信息(例如输入,运行量子算法和输出)到服务器。但是,BQC设计用于容差量子计算,这需要许多辅助量子位,这可能不适合NISQ设备。在这里,我们提出了一种有效的方法,可以为客户端提供保证安全性的NISQ计算。在我们的体系结构中,仅需要N +1量子位,假设服务器已知Ansatzes的形式,其中N表示原始NISQ算法中必要的量子数。客户端仅在从服务器发送的辅助量子位上执行单量测量,并且测量角可以指定NISQ算法的ANSATZES的参数。无信号原则可以保证客户端选择的参数或算法的输出都不会泄漏到服务器。这项工作为NISQ设备的新应用程序铺平了道路。
接口和TM1650 通信,在输入数据时当SCL 是高电平时,SDA 上的信号必须保持不变;只有SCL 上的 时钟信号为低电平时,SDA 上的信号才能改变。数据输入的开始条件是SCL 为高电平时,SDA 由高变
交联乙烯-四氟乙烯 (X-ETFE) 因其出色的耐热、抗蠕变和抗电弧跟踪性能而常用作航天器中的电缆护套材料。2003 年,Midori-II(先进地球观测卫星-II:ADEOS-II)由于电力供应减少而停止提供观测数据。异常原因被确定为太阳能桨上的放电事件;线束损坏被认为是放电的可能诱因。随后,JAXA 评估了由 X-ETFE 制成的电缆护套的退化情况。对于 Midori-II 任务,最严重的环境因素是高温;循环温度测试显示产生了裂纹。此外,地面测试结果表明,护套材料因原子氧 (AO)、电子束 (EB) 和紫外线 (UV) 照射等空间环境影响而退化。特别是,由紫外线引起的褐变相当严重,高温尤其加剧。不同温度下紫外线照射对 X-ETFE 聚合物太阳吸收率变化的影响。与低于 313K 时相比,373K 样品的太阳吸收率下降很快。太阳紫外线引起的褐变增加了空间材料的太阳吸收率(导致温度进一步升高),从而导致恶性循环。评估后,JAXA 提出建议,X-ETFE 电缆护套不应暴露在太空环境中。本文介绍了空间环境对 X-ETFE 聚合物(SPEC 55 电线和电缆;Raychem – Tyco Electronics Corp.)影响的评估结果:紫外线、AO 和电子束 (EB) 辐照。1. 简介
高空伪卫星 (HAPS) 是一种固定翼、太阳能供电的无人驾驶飞行器 (UAV),旨在成为固定轨道卫星的灵活替代品,用于长期监测地面活动。然而,由于其重量轻、电动机功率弱,该平台对天气相当敏感,无法在危险天气区快速飞行。在这项工作中,我们将多个 HAPS 的任务规划问题公式化为以 PDDL+ 表示的混合规划问题。该公式还考虑了平台动态建模问题、时变环境以及需要执行的异构任务。此外,我们提出了一个框架,将 PDDL+ 自动规划器与自适应大邻域搜索 (ALNS) 方法相结合,开发该框架是为了将自动规划器与特定于该问题的元启发式方法相结合。任务和运动规划在框架内以交织的方式完成,因此保留了共同的决策/搜索空间。我们使用第三方 HAPS 真实模拟器以及一组基准测试验证了我们的方法,表明我们的集成方法可以制定可执行的任务计划。
各种量子电路被用作多功能量子机学习模型。一些经验结果在监督和生成的学习任务中具有优势。但是,当应用于加固学习时,却少知道。在这项工作中,我们认为是由低深度硬件效果ANSATZ组成的变异量子电路,是增强学习代理的参数化策略。我们表明,可以使用对数数量的参数总数来获得策略梯度的ϵ- approximation。我们从经验上验证了这种量子模型的行为与标准基准标记环境中使用的典型经典神经网络和仅使用一小部分参数所使用的典型经典神经网络。此外,我们使用Fisher Information矩阵频谱研究量子策略梯度中的贫瘠高原现象。
量子计算因其具有彻底改变计算能力的潜力而备受关注,随着它的出现,各种子领域的众多应用也应运而生。其中一个特别的子领域是量子神经网络 (QNN),它建立在流行且成功的经典对应物之上。QNN 通过利用量子信息中的量子力学原理和概念提供了一种替代方法。本论文项目研究变分量子算法作为量子神经网络的可训练性。具体而言,研究了用于天线倾斜优化用例的量子神经网络假设。QNN 架构在强化学习数据集上进行了测试,当仅实施单层时,其预测误差较低。此外,通过参数初始化技术检查了荒芜高原 (BP) 现象,该技术并没有改善模型的性能,因为添加了 QNN 的多层。最后,研究了训练数据集的结构,其中考虑了初始纠缠、线性独立性和正交性。研究发现,可控的纠缠量是有利的,没有纠缠或过多的纠缠会对模型的性能产生不利影响,而线性独立性和正交性的重要性高度依赖于数据集,线性独立性显示出进一步减少所需训练数据集大小的潜力。