变异量子算法(VQA)被认为是嘈杂的中间尺度量子(NISQ)设备的有用应用。通常,在VQA中,参数化的ANSATZ电路用于生成试验波函数,并且对参数进行了优化以最大程度地减少成本函数。另一方面,已经研究了盲量量计算(BQC),以便通过使用云网络为量子算法提供安全性。执行量子操作能力有限的客户端希望能够访问服务器的量子计算机,并且BQC允许客户端使用服务器的计算机,而不会泄漏客户端的信息(例如输入,运行量子算法和输出)到服务器。但是,BQC设计用于容差量子计算,这需要许多辅助量子位,这可能不适合NISQ设备。在这里,我们提出了一种有效的方法,可以为客户端提供保证安全性的NISQ计算。在我们的体系结构中,仅需要N +1量子位,假设服务器已知Ansatzes的形式,其中N表示原始NISQ算法中必要的量子数。客户端仅在从服务器发送的辅助量子位上执行单量测量,并且测量角可以指定NISQ算法的ANSATZES的参数。无信号原则可以保证客户端选择的参数或算法的输出都不会泄漏到服务器。这项工作为NISQ设备的新应用程序铺平了道路。
接口和TM1650 通信,在输入数据时当SCL 是高电平时,SDA 上的信号必须保持不变;只有SCL 上的 时钟信号为低电平时,SDA 上的信号才能改变。数据输入的开始条件是SCL 为高电平时,SDA 由高变
软件开发是一个持续、渐进的过程。开发人员不断以小批量而非一次性大批量的方式改进软件。小批量的高频率使得使用有效的测试方法在有限的测试时间内检测出错误变得至关重要。为此,研究人员提出了定向灰盒模糊测试 (DGF),旨在生成针对某些目标站点进行压力测试的测试用例。与旨在最大化整个程序的代码覆盖率的基于覆盖范围的灰盒模糊测试 (CGF) 不同,DGF 的目标是覆盖潜在的错误代码区域(例如,最近修改的程序区域)。虽然先前的研究改进了 DGF 的几个方面(例如电源调度、输入优先级和目标选择),但很少有人关注改进种子选择过程。现有的 DGF 工具使用主要为 CGF 定制的种子语料库(即一组覆盖程序不同区域的种子)。我们观察到,使用基于 CGF 的语料库限制了定向灰盒模糊测试器的错误查找能力。为了弥补这一缺陷,我们提出了 TargetFuzz,这是一种为 DGF 工具提供面向目标的种子语料库的机制。我们将此语料库称为 DART 语料库,它仅包含与目标“接近”的种子。这样,DART 语料库就可以引导 DGF 找到目标,从而即使在有限的模糊测试时间内也能暴露漏洞。对 34 个真实漏洞的评估表明,与基于 CGF 的通用语料库相比,配备 DART 语料库的 AFLGo(一种最先进的定向灰盒模糊测试器)可以发现 10 个额外的漏洞,并且平均在暴露时间上实现了 4.03 倍的加速。
甘蔗厂被认为是通过增强的风化(EW)具有很高的二氧化碳去除(CDR)的潜力,但尚未定量评估。这项研究的目的是1)通过EW评估各种甘蔗厂灰分的CDR电位,以及2)研究土壤条件和铣削灰分对CDR的影响。这是通过表征澳大利亚五台灰烬的物理和化学性质并使用一维反应性传输模型模拟风化的。该模型被列为模拟,以模拟100吨/公顷的湿灰(47 - 65%水)或压碎玄武岩的风化,在各种土壤pH和二氧化碳二氧化碳部分压力(PCO 2)的各种组合下(PCO 2)。在两级阶乘设计中进行了灵敏度分析,以测试pH,pH缓冲,材料表面积,浸润速率,植物摄入养分,有机物阳离子阳离子交换表面和PCO 2对建模CDR的影响。磨坊灰分的模拟CDR明显小于玄武岩(p <0.001),但在灰烬之间大多没有显着差异(p> 0.05)。铣削灰分的风化已累积地去除0.0 - 4.0 t CO 2 /ha(0.00 - 0.040 t CO 2 /t湿灰),类似于文献中建模的一些玄武岩和橄榄石。在大约5年内实现了磨坊灰分的理论最大CDR(基于适用的可风化材料)。CDR的估计值因条件而变化。至少当初始土壤溶液pH值最低(4.5,未封闭)时,pH为6.5或更少,持续缓冲且PCO 2较低(600 ppm)。cdr也显着降低。此处量化的pH和pH缓冲的效果可以解释酸性土壤现场试验中EW的低测量CDR,并突出了对pH缓冲能力进行更现实的建模的需求。总体而言,Mill Ash通过EW表现出很高的CDR潜力,尤其是在考虑生命周期益处的情况下,尽管必须在现场进行验证。
高空伪卫星 (HAPS) 是一种固定翼、太阳能供电的无人驾驶飞行器 (UAV),旨在成为固定轨道卫星的灵活替代品,用于长期监测地面活动。然而,由于其重量轻、电动机功率弱,该平台对天气相当敏感,无法在危险天气区快速飞行。在这项工作中,我们将多个 HAPS 的任务规划问题公式化为以 PDDL+ 表示的混合规划问题。该公式还考虑了平台动态建模问题、时变环境以及需要执行的异构任务。此外,我们提出了一个框架,将 PDDL+ 自动规划器与自适应大邻域搜索 (ALNS) 方法相结合,开发该框架是为了将自动规划器与特定于该问题的元启发式方法相结合。任务和运动规划在框架内以交织的方式完成,因此保留了共同的决策/搜索空间。我们使用第三方 HAPS 真实模拟器以及一组基准测试验证了我们的方法,表明我们的集成方法可以制定可执行的任务计划。
各种量子电路被用作多功能量子机学习模型。一些经验结果在监督和生成的学习任务中具有优势。但是,当应用于加固学习时,却少知道。在这项工作中,我们认为是由低深度硬件效果ANSATZ组成的变异量子电路,是增强学习代理的参数化策略。我们表明,可以使用对数数量的参数总数来获得策略梯度的ϵ- approximation。我们从经验上验证了这种量子模型的行为与标准基准标记环境中使用的典型经典神经网络和仅使用一小部分参数所使用的典型经典神经网络。此外,我们使用Fisher Information矩阵频谱研究量子策略梯度中的贫瘠高原现象。
量子计算因其具有彻底改变计算能力的潜力而备受关注,随着它的出现,各种子领域的众多应用也应运而生。其中一个特别的子领域是量子神经网络 (QNN),它建立在流行且成功的经典对应物之上。QNN 通过利用量子信息中的量子力学原理和概念提供了一种替代方法。本论文项目研究变分量子算法作为量子神经网络的可训练性。具体而言,研究了用于天线倾斜优化用例的量子神经网络假设。QNN 架构在强化学习数据集上进行了测试,当仅实施单层时,其预测误差较低。此外,通过参数初始化技术检查了荒芜高原 (BP) 现象,该技术并没有改善模型的性能,因为添加了 QNN 的多层。最后,研究了训练数据集的结构,其中考虑了初始纠缠、线性独立性和正交性。研究发现,可控的纠缠量是有利的,没有纠缠或过多的纠缠会对模型的性能产生不利影响,而线性独立性和正交性的重要性高度依赖于数据集,线性独立性显示出进一步减少所需训练数据集大小的潜力。
0.89 和 δ D = 0.76。发现平均写入噪声为 σ write = 1.97%。b,在一系列 100 个连续脉冲(每个突触前脉冲为 10 µA,100 毫秒)后,设备电导率逐步增加。插图显示了 20 个状态的状态密度分布,这些状态不重叠,表明写入噪声极低
图 1 四个 𝑁 量子比特量子寄存器上的四个试验状态 | 𝑓 ( 𝑗 ) ⟩ 的 QNPU 架构,初始化为 | 0 ⟩ = | 00 . . . 0 ⟩ 。网络的红色部分创建变分试验状态。绿色 QNPU 部分实现问题特定的线性算子 𝑂 𝑗 。其操作由端口 CP 控制,试验函数通过输入端口 IPx 输入,输出标记为 OPx。蓝色辅助网络用于评估成本函数(图来自 [11])。
Artishotter Emma CambierSébastienChary Aline aline Servane Houin。韦伯·帕敏(Weber Pamine)