作物驯化是由植物与人之间的共同进化过程产生的,从而为人类提供了可预测和改善的资源。在成千上万的食用物种中,许多是为食物收集或种植的,但只有少数人被驯化,甚至更少的人类消耗的基于植物的卡路里。为什么不了解这么少的物种变得完全圆顶。在这里,我们提出了植物基因组和表型的三个方面,这些方面只能促进少数几个野生植物的驯化,即可塑性,性状链接和突变率的差异。我们可以利用当代生物学知识来识别为什么只有某些物种适合驯化的因素。这些研究将促进未来的驯化和改进工作。
对抗癌,抗菌和抗病毒疗法的耐药性的演变在癌症和病原体细胞种群中广泛存在。经典理论严格认为,在不断发展的种群中,遗传和表型变异是独立于选择压力而产生的。然而,抗菌剂,传统的细胞毒性化学疗法和靶向癌症疗法的最新实验发现表明,治疗不仅可以选择选择,而且会通过改变突变过程影响适应率。在这里,我们分析了一个模型,该模型诱导了突变率的增加,并探索了其对治疗优化的后果。我们认为,治疗的真正生物学成本不仅限于有害的副作用,而是通过从根本上改变微环境中基本的生态进化动态来更深刻地实现。对控制的成本(或附带损害)的考虑是成功治疗设计的核心,并且可以统一基于进化的治疗优化方法。使用进化救援的概念,我们将处理作为最佳控制问题,并解决了最佳消除策略,从而最大程度地降低了进化救援的可能性。我们的解决方案利用了一个权衡,其中增加药物浓度具有两个相反的影响。一方面,它通过更快地减少目标细胞群的大小来减少从头突变;另一方面,较高的剂量会产生剩余的治疗诱导的突变。我们表明,旨在尽快消除并代表当前护理标准的积极消除策略,即使在药物诱导的增加(折叠变化≤10)到基线突变率的情况下,也可能有害。我们的发现强调了剂量依赖性在抵抗进化中的重要性,并激发了对诱变性和其他隐藏的疗程的促进抗药性的进一步研究。
农业的采用引发了人类饮食向富含淀粉的快速转变 1 。淀粉酶基因有助于淀粉的消化,在一些高淀粉摄入量的现代人类群体中观察到了淀粉酶拷贝数的增加 2 ,尽管缺乏近期选择的证据 3,4 。在这里,使用来自大约 5,600 个当代和古代人类的 94 个长读单倍型解析组装和短读数据,我们解决了淀粉酶基因座结构变异的多样性和进化历史。我们发现淀粉酶基因在农业群体中的拷贝数高于渔猎和游牧群体。我们鉴定了 28 种不同的淀粉酶结构架构,并证明在整个人类近代历史中,几乎相同的结构在不同的单倍型背景下反复出现。 AMY1 和 AMY2A 基因均经历了多次重复/缺失事件,突变率高达单核苷酸多态性突变率的 10,000 倍以上,而 AMY2B 基因重复则具有单一起源。使用基于泛基因组的方法,我们推断了数千名人类的结构单倍型,并在现代农业人群中以更高的频率识别出大量重复的单倍型。利用 533 个古人类基因组,我们发现,在过去 12,000 年中,西欧亚大陆中含有重复的单倍型(基因拷贝数多于祖先单倍型)的频率迅速增加,这表明存在正向选择。总之,我们的研究强调了农业革命对人类基因组的潜在影响以及结构变异在人类适应中的重要性。
突变育种技术可以减少所需时间,并能准确选择所需性状。另一种称为突变育种的技术自 20 世纪 20 年代起也被用于植物育种。突变是指基因(DNA 序列)的变化或变异。所有生物体都会在低水平上发生突变。在这种技术中,种子会暴露在辐射(X 射线、伽马射线)和化学物质下,以提高突变率,从而获得所需性状。20 世纪 70 年代,美国农民希望葡萄柚的颜色更深、味道更甜。科学家们利用突变育种技术实现了这一目标,现在这些品种占据了美国德克萨斯州种植的葡萄柚的大部分。3
DNA受到许多内源性和外源性损害,会损害DNA复制和适当的染色体分离。DNA双链断裂(DSB)是最危险的病变之一,必须修复以保持染色体完整性。有机体配备了涉及同源重组的几种不同但相关的修复机制,包括单链退火,基因转化和分裂诱导的复制。DNA断裂和修复是细胞功能的核心,其操纵在癌症治疗中起着重要作用。癌细胞通常表现出高的遗传突变率,其中许多因DNA修复机制或DNA损伤而引起的许多。细胞修复DNA断裂的能力对于维持基因组稳定性至关重要,但它也带来了挑战,也是癌症治疗的机会。
鳞状细胞癌 (SqCC) 是第二大常见的非小细胞肺癌 (NSCLC) 组织类型,占 NSCLC 病例的 20%-30% [1]。尽管近年来分子诊断和治疗的进展显著提高了晚期 NSCLC 患者的生存率,但晚期肺 SqCC 患者的预后仍然不佳。肺 SqCC 患者通常在年龄较大时才被确诊,并伴有多种合并症,使他们容易受到治疗引起的毒性影响 [2,3]。此外,大多数具有生存获益的治疗突破并不适用于这种组织类型。肺 SqCC 与吸烟直接相关,因此具有高突变率和复杂的基因组改变,使开发有效的靶向疗法变得复杂 [4,5]。
通过散射培养基的光聚焦对生物组织中的光学应用有重大影响。最近,迭代的波前塑形已成功地用于通过或内部散射介质进行光聚焦,并引入了各种启发式算法以提高性能。虽然令人鼓舞,但可能需要大量的努力来调整参数朝着强大和最佳优化。此外,对于不同的散射样品和实验条件,最佳参数可能会有所不同。在这封信中,我们通过将传统的遗传算法(GA)与BAT算法(BA)相结合,提出了一种“智能”无参数算法(PFA),并且可以通过实时反馈自动计算突变率。在迭代WFS中使用此方法,可以在没有参数调整过程的情况下实现可靠和最佳性能。
基因组编辑通过提供更快,更具成本效益的方法来在特定靶位点上修改细菌基因组,从而显着提高。基因组编辑很大程度上是基于诱导所需表型的遗传变异和筛查/选择(Pines等,2015)。It is now possible to target spe- cific genomic sites using indirect techniques such as programmable nucleases (CRISPR /Cas9, Zinc Finger Nucleases, and Transcription Activator-Like Effector Nucleases (TALENS)) ( Esvelt and Wang, 2013 ) and more direct methods such as multiplex automated genome engi- neering (MAGE) ( Court et al., 2002 ; Wang et al., 2009; Wang等人,2012年;具体来说,法师使用带有所需突变的单链寡核苷酸,这些突变被重新组合到基因组中,并依赖于甲基指导的不匹配修复系统的成功失活。这最终导致背景突变率提高了两个数量级,并且脱靶突变的积累影响了未来的表型研究(CS O等人,2020年)。Nyerges等。(Nyerges等,2016)随后修改了此方法(Portmage),以克服MAGE的局限性,从而创建具有温度控制的显性负MUTL等位基因,该质粒仅在寡核苷酸整合过程中限制DNA修复以及λ红重组酶酶。这减少了细菌易受突变率增加的时间,从而降低了脱靶效应。在这里我们使用有些人甚至声称该系统的使用基本上可以消除脱靶效应(Nyerges等,2016; cs; org org o et et al。,2020)。许多人现在已经使用这些方法将新型表型与特定的核苷酸变化相关联,尽管没有报告脱靶突变的报道(Russ等,2020; Tiz等,2019; Moura de Sousa等,2017; Sato等,2018; Spohn等,2018; Spohn等,2019)。
仅在美国,摘要近200万例皮肤鳞状细胞癌(CSCC)就被诊断出来。CSCC的患病率和入侵和转移的倾向都是值得注意的。对于许多患者,手术是治愈性的。然而,经历了免疫抑制或复发性,晚期和转移性疾病的患者仍面临有限的治疗选择和显着的死亡率。CSCC几十年后的阳光暴露后形成,并具有所有癌症中已知最高的突变率。这种突变负担使努力确定驱动CSCC启动和进展的主要因素的努力变得复杂,这反过来又阻碍了靶向疗法的发展。在这篇综述中,我们总结了患者CSCC肿瘤中观察到的突变和改变,从而影响信号通路,转录调节剂和微环境。我们还强调了开发和临床试验中的新型治疗机会。
纤毛属均成为微生物真核遗传学中的第一个模型系统之一,这在很大程度上有助于早期理解与基因组重排,隐秘形成,细胞质遗传性和内生物植物的多种多样的现象,以及在interns of interns of Small and small and cons of shime and cons of sym and cons of sym and of n os of small and of necne and small and of necne and small。最近在科学和人口基因组学领域取得了实质性进展。Parmecium物种将一些最低的已知突变率与一些已知有效人群以及可能非常高的重组率相结合,从而使人口遗传环境促进了异常有效的选择能力。因此,基因组非常精简,具有很小的基因间区域与少量的微小内含子相结合。大部分黑质研究的主题,古代的aurelia物种复合物,是两个