背景和目的。在医学成像中,群体研究必须克服个体之间存在的差异,以识别可用于诊断目的的不变图像特征。在功能性神经成像中,识别在群体水平上成立的神经编码原理的一个有吸引力的解决方案是受试者间模式分析,即从来自多个受试者的数据中学习预测模型并评估其对新受试者的泛化性能。尽管近年来它越来越受欢迎,但由于文献中明显缺乏正式定义,其广泛采用仍然受到阻碍。在本文中,我们精确介绍了针对功能性神经成像的多变量组分析的受试者间模式分析的第一个原则性形式化。方法。我们建议将受试者间模式分析构建为多源传导传递问题,从而将其置于几个定义明确的机器学习设置中并拓宽可用算法的范围。我们描述了两组使用几个开放数据集的受试者间大脑解码实验:一项涉及 16 名受试者的脑磁图研究和一项涉及 100 名受试者的功能性磁共振成像范例。我们通过进行模型比较来评估我们框架的相关性,其中一个大脑解码模型利用我们的形式化,而其他则不利用。结果。第一组实验证明了使用受试者标准化的大脑解码器与使用其他标准化方案的最先进模型相比具有优越性,证明了我们形式化的传导和多源组件的兴趣第二组实验定量表明,即使经过这样的转换,大脑解码器也更难以推广到新参与者而不是来自训练阶段可用的参与者的新数据,从而凸显了需要克服的转移差距。结论。本文将受试者间模式分析的第一个形式化描述为多源传导迁移学习问题。我们利用几个互补的功能性神经成像数据集上的概念验证实验证明了这种形式化的附加价值。这项工作将有助于推广功能性神经成像人群研究的受试者间模式分析,并为未来的方法创新铺平道路。