生物正交磷。自那时以来,磷酸探针已被用于标记叠氮化物功能化的生物分子。Staudinger连接还为开发其他基于磷的化学物质的发展铺平了道路,其中许多化学物质广泛用于生物学实验中。几项评论突出了生物正交磷的设计和应用中的早期成就。本评论总结了该领域的最新进展。我们讨论了经典的类似Staudinger的转型的创新,这些转型使新的生物学追求。我们还强调了对生物正交阶段的相对新移民,包括环丙酮 - 磷酸结扎和磷酸磷酸反应。审查以涉及磷酸盐和磷酸盐结扎的化学选择性反应结束。对于每个转换,我们描述了整体机制和范围。我们还展示了为特定功能微调试剂的努力。我们进一步描述了化学物质在生物环境中的最新应用。总的来说,这些例子强调了生物正交膦试剂的多功能性和广度。
CTA-UPy 3 的合成在配有蛋形磁力搅拌器的三颈圆底烧瓶中在氮气气氛下进行。将抗坏血酸钠(93 mg,0.47 mmol)、五水硫酸铜(II)(48 mg,0.19 mmol)、叠氮化物官能化的 RAFT 剂 2(800 mg,1.79 mmol)和炔丙基-UPy 1(1g,2.90 mmol)加入到反应烧瓶中,并用氮气冲洗烧瓶 3 次。将无水 DMF(12 mL)注入反应混合物中并在室温下搅拌。一小时后,混合物的颜色从绿褐色变为黄色。三天后,将混合物倒入 150 mL 0.1M HCl 中,并用 DCM 洗涤三次。然后用 150 mL 盐水洗涤有机相一次,用 MgSO 4 干燥并蒸发溶剂。使用柱色谱法(40:1 氯仿/甲醇作为洗脱剂)获得纯产品。
目的:组织型纤溶酶原激活剂 (tPA) 及其衍生物 (Reteplase-rPA、Alteplase-tPA 和 Tenecteplase- TNKase) 已获得 FDA 批准,用于治疗心肌梗死、急性缺血性中风、肺栓塞以及动脉血栓形成和栓塞。它们的使用受到半衰期短和严重副作用(即内出血和异常血管重塑)的限制。它们的药代动力学可以通过各种半衰期延长 (HLE) 策略来增强,例如聚合物结合 (PEGylation)、与血液的长循环成分 (白蛋白、IgG、红细胞) 结合以及糖工程。近年来,白蛋白结合引起了广泛关注,许多药物已获得 FDA 批准 (胰岛素地特胰岛素、利拉鲁肽、Albinterferon、rIX–FP)。我们假设,通过 SPAAC(应变促进叠氮化物 - 炔烃环加成,点击化学)将 tPA 衍生物与白蛋白结合,通过增加流体动力学半径并允许药物的 FcRn 循环,可以延长 tPA 药物的半衰期。
摘要:现代邻近标记技术在理解生物分子相互作用方面取得了重大进展。然而,当前的工具主要使用与复杂生物环境不兼容的激活模式,限制了我们在动物模型中研究细胞和组织水平微环境的能力。在这里,我们报告了 μ Map-Red,这是一个邻近标记平台,它使用红光激发的 Sn IV 二氢卟酚 e6 催化剂来激活苯基叠氮化物生物素探针。我们通过展示体外通过多层组织的光子控制蛋白质标记来验证 μ Map-Red,然后我们将我们的平台应用于纤维素以标记 EGFR 微环境,并通过 STED 显微镜和定量蛋白质组学验证性能。最后,为了展示复杂生物样本中的标记,我们在小鼠全血中部署了 μ Map-Red 来分析红细胞表面蛋白。这项工作代表了在复杂组织环境和动物模型中基于光的邻近标记方法的重大进步。
摘要 尽管检测蛋白质合成的方法取得了进展,但目前还无法测量整个脊椎动物大脑中的内源性蛋白质合成水平。我们开发了一种转基因斑马鱼系,可以对整个动物的新生蛋白质进行细胞类型特异性标记和成像。通过在斑马鱼 MetRS 结合口袋 (MetRS-L270G) 中用甘氨酸替换亮氨酸,我们能够在蛋白质合成过程中以细胞类型特异性的方式掺入含叠氮化物的非典型氨基酸叠氮亮氨酸 (ANL)。然后通过“点击化学”标记新合成的蛋白质。使用 Gal4-UAS-ELAV3 系在神经元中表达 MetRS-L270G,我们测量了整个神经系统的蛋白质合成强度。我们可视化了内源性蛋白质合成,并证明癫痫发作引起的神经活动会导致神经元的翻译水平增强。该方法可以以细胞类型特异性的方式在单细胞分辨率下对体内内源蛋白质合成进行稳健分析。
衍生物6a - d在CMR中显示了D 162 ppm左右,表明甲状酸环的形成和亚甲基接头的化学shi shi shi shi s ship s cant在D 60和47 ppm上的显着降低至d 40和34 ppm左右,如在d 40和34 ppm左右,如在tem cpm左右,在tem cpm of d 40和34 ppm中所示。†对于含有1,2,3-三唑连接器15a - c的化合物,它们通过铜催化了Acefylline 14的丙烯酸化衍生物的叠氮化物烷基环载反应,从而成功获得了它们,该反应是由相应的氮杂10a-b和13与相应的10a-b和13中的13种制成的。方案4。在D 8(1H)和5.2(1H)和5.2(2H)ppm附近出现对应于三唑环和Xanthine部分之间的甲基桥的其他信号的出现。
前药或可以激活前药的成分,特定于肿瘤。生物正交化学已成为按需前药激活的一种有希望的平台,因为它包括可以在生理条件下进行的化学反应而不会干扰生物学过程。4,5这些反应的选择性,特定城市和相当快的动力学允许精确控制非毒性前药的激活。6 - 8据报道,许多生物正交反应具有很高的选择性前药激活的潜力,例如叠氮化物和三苯基芬丁基之间的Staudinger连接,9和跨环环烯(TCO)和四嗪(TZ)之间的四津连接。10,Staudinger连接主要用于连接应用,因为其动力学相对较慢(K 2〜10-3 m-1 s-1),并且少量报告揭示了其前药激活的潜力。11 - 13在低浓度下,四嗪连接以其快速点击释放反应动力学(K 2〜10 4 m-1 s-1)而闻名,许多报告表明,TZ部分的反应性,
摘要:尽管顺铂是一种化学治疗剂,但其应用仍受到限制剂量副作用的影响,并且对癌细胞缺乏选择性。研究人员可以利用铂(IV)氧化态的促药性质来克服这些问题,并通过用特定的受体在肿瘤细胞膜中过表达的金属中心的配位球体(例如,碳水化合物)。在本文中,我们报告了基于顺铂支架的四种新型碳水化合物模化的PT(IV)Pro-prougs的合成,以及它们针对骨肉瘤(OS)的生物学活性,骨肉瘤(OS)是一种恶性肿瘤,这是一种恶性肿瘤,在青少年和年轻人中最常见。使用铜催化的叠氮化物 - 烷基环加成(CUAAC)化学,碳水化合物靶向载体和PT支架是连接的,这是轻度和稳健的反应条件的代名词。使用多核1D-2D NMR(1 H,13 C和195 pt),IR,HR-MS,Elem对新型复合物进行表征。分析和简历。讨论了2D和3D的细胞毒性以及OS细胞系以及非癌性人类胎儿成骨细胞(HFOB)的细胞形态研究。
图1:纳米壳合成过程和稳定性验证的示意图。(a)通过三步固定过程在细胞膜上合成DNA纳米壳,包括:(i)A'-SSDNA启动器在糖科利克斯上的固定化; (ii)杆A(绿色)通过ssDNA杂交与A'-ssDNA结合,以及(iii)杆B(蓝色)通过H-SSDNA在杆A和H'ssDNA上的杂交在杆上的rod a和h'-ssDNA杂交的结合和交联。杆A和B的直径约为7nm,长度约为400nm。三个A-SSDNA(蓝色),14 s-ssDNA(黑色)和14 h-ssDNA(黄色)均匀分布在Rod A上。14 s-ssDNA(黑色)和14 h'-ssDNA(黄色)均匀分布在杆B上。所有ssDNA悬垂都是22对。比例尺:500 nm。(b)单个DNA棒的琼脂糖凝胶电泳,以及30分钟在37°C下孵育30分钟后杆的混合物。(c)单个DNA棒和两种类型的细胞培养基中的凝集的琼脂糖凝胶电泳研究。杆A和棒混合物。(d)通过铜免费点击化学,将DBCO标记的A'-SSDNA启动器固定在叠氮化物细胞表面糖脂上。
摘要:糖合成酶是突变的糖基水解酶,可以在受体糖酮/aglycone基团和活化的供体糖之间合成糖苷键,并具有合适的离开组(例如Azido,Fluoro)。但是,快速检测涉及偶氮糖作为供体糖的糖合酶反应产物的糖合酶反应产物一直具有挑战性。这限制了我们将合理工程和定向演化方法应用于快速筛选的能力,以改善能够合成定制聚糖的聚糖合成酶。在这里,我们概述了我们最近开发的筛查方法,用于使用模型的岩藻合成酶酶快速检测糖合酶活性,该酶设计为活性在岩藻糖基叠氮化物供体糖上。我们使用半随机和随机误差诱发诱变创建了一个多元化的建筑物联合组织突变体库,然后使用我们的小组开发的两种不同的筛选方法来鉴定了具有所需活性的相关的岩体合成酶突变体,以检测糖合酶的活性(即,通过检测在纤维蛋白酸盐反应后的同体形式上检测偶极外形); a)PCYN-GFP调节方法,b)单击化学方法。最后,我们提供了一些概念验证结果,说明了两种筛查方法的实用性,以快速检测涉及氮杂糖作为捐助者组的糖合酶反应的产物。