厌氧甲烷营养 (ANME) 古菌从甲烷分解中获取能量,但人们对它们的染色体外遗传元素了解甚少。本文我们描述了与 Methanoperedens 属的 ANME 古菌相关的大质粒,这些质粒在富集培养物和其他天然缺氧环境中存在。通过人工筛选,我们发现其中两个质粒很大(155,605 bp 和 191,912 bp),呈环状,并且可以双向复制。质粒的拷贝数与主染色体相同,并且质粒基因被积极转录。其中一个质粒编码三种 tRNA,即核糖体蛋白 uL16 和延伸因子 eEF2;这些基因似乎在宿主 Methanoperedens 基因组中缺失,表明质粒和宿主之间存在强制性的相互依赖性。我们的工作为开发遗传载体开辟了道路,以阐明 Methanoperedens 的生理学和生物化学,并可能对其进行基因编辑以增强生长并加速甲烷氧化速率。
我们研究了在黄铁矿 (FeS 2 ) 上生长的铁和硫氧化、极嗜热酸的古菌 Metallosphaera sedula 的代谢组。由于细胞与矿物材料之间紧密接触和相互作用,从这些微生物中提取有机物是一项重大挑战。因此,我们应用了一种改进的方案来破坏微生物细胞并将其有机成分与矿物表面分离,通过液液萃取提取亲脂性化合物,并使用 MALDI-TOF MS 和 UHPLC-UHR-Q/TOF 进行代谢组学分析。通过这种方法,我们确定了几种参与中心碳代谢和古菌中发现的改良 Entner-Doudoroff 途径的分子、硫代谢相关化合物以及参与 M. sedula 适应极端环境(如金属耐受性和耐酸性)的分子。此外,我们还确定了参与微生物相互作用的分子,即通过生物膜形成进行的细胞表面相互作用和通过群体感应进行的细胞间相互作用,这依赖于信使分子进行微生物通讯。此外,我们利用高级化合物识别软件(MetaboScape)成功提取并识别了不同的饱和噻吩醌。这些醌是 M. sedula 的呼吸链电子载体,具有在极端环境条件下进行生命检测的生物标志物潜力。
铁硫 (Fe–S) 蛋白对于产甲烷菌进行甲烷生成和生物固氮(固氮)的能力至关重要。尽管如此,产甲烷菌中 Fe–S 簇生物合成所涉及的因素仍然很大程度上未知。最小 SUF Fe–S 簇生物合成系统 (即 SufBC) 被假定为产甲烷菌中的主要系统。本文研究了 SufBC 在含有两个 sufCB 基因簇的 Methanosarcina acetivorans 中的作用。CRISPRi-dCas9 和 CRISPR-Cas9 系统分别用于抑制或删除 sufC1B1 和 sufC2B2 。在任何测试条件下,包括固氮,无论是 sufC1B1 和 sufC2B2 的双重抑制还是同时删除 sufC1B1 和 sufC2B2 都不会影响 M. acetivorans 的生长。有趣的是,仅删除 sufC1B1 在所有生长条件下都会导致生长延迟表型,这表明 sufC2B2 的删除在没有 sufC1B1 的情况下起到了抑制突变的作用。此外,删除 sufC1B1 和/或 sufC2B2 不会影响 M. acetivorans 细胞中的总 Fe-S 簇含量。总体而言,这些结果表明最小 SUF 系统不是 M. acetivorans 中 Fe-S 簇生物合成所必需的,并挑战了 SufBC 在产甲烷菌中 Fe-S 簇生物合成中的普遍作用。
1 意大利墨西拿,Contrada Porticatello, 29, 98167,综合海洋生态学系,Anton Dohrn 动物站,西西里海洋中心; erika.arcadi@szn.it (EA); rosario.calogero@szn.it (RC); franco.andaloro@szn.it (FA) 2 意大利法诺海洋中心、Stazione Zoologica Anton Dohrn、Viale Adriatico 1-N、61032 法诺、海洋生物技术部; emanuela.buschi@szn.it 3 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Fano Marine Centre,Viale Adriatico 1-N,61032 Fano,意大利 4 海洋生物资源研究基础设施部,Stazione Zoologica Anton Dohrn,Villa Comunale,80121 Naples,意大利; pasquale.deluca@szn.it 5 国家海洋和实验地球物理研究所 - OGS Borgo Grotta Gigante 42/C, 34010 Sgonico,意大利; vesposito@inogs.it 6 海洋生物生物学和进化部,Stazione Zoologica Anton Dohrn,西西里海洋中心,Via dei Mille 46, 98057 Milazzo,意大利; teresa.romeo@szn.it 7 国家环境保护与研究研究所,Via dei Mille 46, 98057 Milazzo,意大利 8 马尔凯理工大学生命与环境科学系,Via Brecce Bianche, 60131 Ancona,意大利; r.danovaro@univpm.it 9 国家生物多样性未来中心(NBFC),90133 巴勒莫,意大利 * 通讯地址:eugenio.rastelli@szn.it (ER); michael.tangherlini@szn.it (MT) † 这些作者对这项工作做出了同等贡献。
摘要:二氧化碳 (CO 2 )、一氧化二氮 (N 2 O) 和甲烷 (CH 4 ) 等人为温室气体排放量不断增加是气候变化的主要驱动因素,如果不加以控制,预计未来几年将带来无数有害后果。鉴于 CH 4 在短期内能够有效地将热量困在空气中,以及反刍动物生产目前占人为排放量的约 30%,人们迫切需要大幅减少反刍动物产生的 CH 4 。虽然正在评估此背景下的各种策略,但可能需要采取多方面的方法来实现显着的减排。饲料补充是一种通过减弱瘤胃古菌的甲烷生成而在该领域显示出前景的策略;然而,这可能成本高昂且有时不切实际。在本篇综述中,我们研究并讨论了使用 CRISPR/Cas 介导的基因编辑平台直接调节饲料和/或瘤胃古生菌本身以减少甲烷生成的前景。这种方法可以提供一种有价值的补充替代方案,并有可能在未来为农业的可持续性以及减缓气候变化做出贡献。
CRISPR-Cas [成簇的规律间隔的短回文重复序列和 CRISPR 相关基因 (Cas)] 是原核生物抵御外来遗传元件入侵的适应性免疫系统,广泛分布于大多数古菌和许多细菌的染色体中(Garneau 等,2010;Marraffini,2015;Hille 等,2018)。该系统由一个 CRISPR 阵列组成,该阵列由短的直接重复序列组成,由从外来遗传元件获得的短可变 DNA 序列(称为“间隔区”)隔开,两侧是各种 Cas 基因。Cas 基因高度多样化,参与 CRISPR 活动的不同阶段。尽管 CRISPR-Cas 被称为原核生物的防御系统,但它们参与不同的非防御作用,包括细菌生物膜形成、群体感应的调节和致病性。本期特刊旨在收集介绍CRISPR-Cas研究最新进展的文章,以更好地了解CRISPR-Cas系统的分布、多样性和生物学功能。我们收集了9篇文章,重点介绍了CRISPR-Cas的分布、结构、生物学功能和应用的最新研究,以及CRISPR-Cas研究的伦理考虑。Cruz-López等人对716个金黄色葡萄球菌基因组的生物信息学分析发现,不同地理区域的金黄色葡萄球菌菌株中仅有0.83%具有IIA型CRISPR-Cas系统,这表明金黄色葡萄球菌中CRISPR-Cas的发生可能是自发的水平基因转移事件。 0.9% 的独特间隔区与质粒或噬菌体基因组相匹配,包括用于治疗金黄色葡萄球菌感染的噬菌体,表明金黄色葡萄球菌产生了噬菌体抗性,并且由于 CRISPR 防御机制导致治疗失败。从周围环境直接吸收外来 DNA 在细菌和古菌的基因组多样性和进化中起着重要作用。刘等人综述了 CRISPR 系统和 Argonauts 在细胞防御自然转化中的功能和可能的机制。有限数量的研究表明 II 型 CRISPR-Cas 可以阻止细菌的自然转化;然而,确切的机制以及其他类型的 CRISPR 系统是否也拮抗自然转化尚不清楚。Argonauts 还可以阻止质粒 DNA 的自然转化。与 CRISPR-Cas 系统不同,Argonauts 介导的防御不会将 DNA 片段整合到宿主基因组中,因此不会产生对入侵 DNA 的记忆。为了优化针对入侵遗传元件的序列特异性免疫,原核生物中的 CRISPR-Cas 不断从新入侵的威胁中获得间隔物。随着时间的推移,许多获得的间隔物可能在其防御机制中变得无用。因此,必须调节间隔物的吸收、其存在和丢失。Garret 发表了一篇非常有趣的评论,其中汇集了不同的观察结果和实验设计,以推测
