您预期收到的任何项目(发票、销售协议、收据或类似文件)都应包含在预估费用中。 所有项目活动(劳动力、施工、采购、发票日期等)必须发生在 2018 年 4 月 1 日至第 1 页所写的结束日期之间。 预估完成日期是指您预期完成该活动或购买该项目的日期。所有预估完成日期必须早于项目结束日期(第 1 页)。 必须附上符合条件的费用明细和报价单副本。报价有助于阐明您的项目细节和资金申请的性质。请勿发送原始报价单或发票 – 请只发送副本。 o 报价和申请表预算(第 3 页)必须细分为各个项目
这个想法很简单:我只发送了三份邀请,让他们简要描述自己的研究并推荐下一位要邀请的研究人员(见图 1)。初始邀请被发送到三个不同领域的三个全球地区,以尽量减少重叠并反映出一个更加多样化的社区(并且三个并发的邀请链可以使流程稍微快一些)。我的一个要求是,推荐的邀请解决的问题与自己面临的问题略有不同。这种“回馈”的方法既减少了我作为编辑可能存在的任何隐性偏见,也让我认识了许多我从未接触过的新研究人员。最终结果是鼓舞人心的:来自 32 个机构和 7 个国家的 35 个人。值得注意的是,三个重复的机构(密歇根州立大学、莱斯大学和耶鲁大学)从不同的邀请链中获得了建议(即没有人推荐来自同一机构的同行)。
过去几年,我们见证了一些关于过程演算量子扩展的提案的发展。其理由很明确:随着量子通信协议的发展,需要抽象并关注量子并发系统的基本特征,就像 CCS 和 CSP 对其经典对应物所做的那样。但到目前为止,还没有出现公认的标准,无论是语法还是行为语义。事实上,各种提案对量子值的观测属性应该是什么并没有达成一致,事实上,这些属性的合理性从未根据量子理论的规定得到验证。为此,我们引入了一种新的演算,即线性量子 CCS (lqCCS),并研究基于反讽和上下文的行为等价性的特征。我们的演算可以被认为是 qCCS 的异步线性版本,而 qCCS 又基于值传递 CCS。线性与异步通信的结合非常符合量子系统的特性(例如不可克隆定理),因为它可以确保每个量子比特只发送一次,从而精确指定某个过程的哪些量子比特与上下文交互。我们利用上下文来研究双相似性与量子理论的关系。我们表明,一般上下文的观察能力与量子理论是不相容的:粗略地说,它们可以根据量子值执行非确定性移动,而无需测量(因此会扰乱)它们。因此,我们细化了操作语义,以防止上下文执行不可行的非确定性选择。这会产生更粗的双相似性,以更好地适应量子设置:(푖)它将量子态的不可区分性提升到过程的分布,并且尽管存在额外的限制,(푖푖)它仍保留了基于经典信息的非确定性选择的表达能力。据我们所知,我们的语义是第一个满足上述两个属性的语义。
摘要 — 集成复杂机器推理技术的基于意图的网络将成为未来无线 6G 系统的基石。基于意图的通信要求网络考虑数据传输的语义(含义)和有效性(在最终用户处)。如果 6G 系统要以更少的比特可靠地通信,同时为异构用户提供连接,这一点至关重要。本文与缺乏数据可解释性的最先进技术相反,提出了神经符号人工智能 (NeSy AI) 框架作为学习观察到的数据背后的因果结构的支柱。特别是,生成流网络 (GFlowNet) 的新兴概念首次在无线系统中用于学习生成数据的概率结构。此外,为了实现更高的语义可靠性,严格制定了一个用于学习最佳编码和解码函数的新型优化问题。开发了新的分析公式来定义语义消息传输的关键指标,包括语义失真、语义相似性和语义可靠性。这些语义度量函数依赖于知识库中语义内容的定义,而这种信息度量反映了节点的推理能力。仿真结果验证了高效通信的能力(使用更少的比特但具有相同的语义),并且与不利用推理能力的传统系统相比,性能明显更好。I. 引言未来的无线系统(例如 6G)如果要集成时间关键型自主系统应用,则必须在传输内容方面更加谨慎。正如香农 (Shannon) [1] 所指出的,传统无线系统注重可靠地发送物理比特,而不注重语义和有效性层。与传输全部数据相比,只发送对接收方有用的信息自然在延迟、带宽利用率和能量方面更有效率(不会影响可靠性)[2]。这是所谓基于意图的语义通信 (SC) 系统 [3] 的核心前提。基于意图的网络是一种自主系统,它定义了它们期望从网络获得的行为,例如“改善网络质量”,然后系统会自动将其转换为实时网络操作。整合语义和有效性方面以创建基于意图的无线网络需要重大的范式转变 [2]–[4]。它特别要求传输和接收节点不再只是盲目设备(来回传输数据),而是成为能够理解和推理数据及其生成方式的类脑设备。一种有前途的方法是将知识表示和推理工具与机器学习相结合。一旦智能嵌入到发送器和接收器中,通信设备就可以感知(数据采集)、预处理并高效通信,而不会产生不必要的网络瓶颈(通过发送大量不必要的数据)。尽管