摘要 与通过强配位或共价键组装的金属有机骨架(MOF)和共价有机骨架(COF)不同,基于非共价相互作用的新型多孔有机分子材料由于其结构单元简单、超分子组装的灵活性而备受关注。非共价π-堆叠有机骨架(πOF)是多孔材料的一个子类,由有机构件通过π-π相互作用自组装形成的晶体网络组成。π-π相互作用和π-离域超分子骨架的柔性、可逆和导电特性赋予πOF有利的属性,包括溶液可加工性、自修复能力、显著的载流子迁移率和优异的稳定性。这些特性使πOF成为气体分离、分子结构测定和电催化等应用的理想选择。自2020年该概念提出以来,πOF的化学和应用都取得了重大进展。未来的研究应侧重于扩大其结构多样性和探索新的应用,特别是在传统多孔材料遇到局限性的领域。[1, 2]。
摘要 这项广泛的研究项目调查了电子塑料废物(称为电子塑料)作为混凝土生产附加成分的创新用途。从非正规部门向更结构化和规范化的系统的转变不仅对于解决日益严重的电子垃圾问题至关重要,而且对于环境保护也至关重要。为了实现这一目标,这项研究收集并使用了从过时的电子设备中获得的废弃电子塑料颗粒。该研究主要集中于对含有不同比例废弃电子塑料(从 4% 到 24% 不等)的混凝土样品的机械、耐久性和微观性能 (XRD) 进行全面分析。此外,该研究引入了一种改进方法,即用占总重量 10% 的粉煤灰代替部分水泥,目的是改善电子塑料灌注混凝土的整体特性和性能。进行这些实验是为了更全面地了解混凝土的行为,包括其结构完整性和整体性能特征。这项研究显著提高了混凝土的可加工性、机械强度和耐久性。
推动了大面积柔性和印刷电子领域的发展。这些进步使得大量应用成为可能,例如有机发光二极管[1,2]、有机光伏电池[3,4]、有机热电电池[5,6]、有机场效应晶体管 (OFET)、[7–10] 有机(生物)传感器[11–13] 和神经形态设备。[14,15] 在这方面,有机场效应晶体管 (OFET) 不仅与其直接的技术应用有关,而且还是研究薄膜电性能的理想试验台。有机半导体通常分为两大类,即共轭聚合物和小分子。前者,即聚合物,由于其溶液可加工性而特别具有吸引力,并且已广泛报道了电荷迁移率高于氢化非晶硅标准(0.5–1 cm2V−1s−1)的 OFET。 [16] 后者是小分子,易于排列成有序的分子晶体,经过数年的化学调整和薄膜处理的精细调整,已经实现了场效应迁移率 > 10 cm 2 V − 1 s − 1 的小分子 OFET。[17–19] 这些材料的 π 共轭化学根源与其骨架上碳原子的 sp 2 杂化有关。这种特殊的特性也常见于
Inconel 625 是一种镍基高温合金,由于其耐腐蚀性以及良好的机械性能(如高温下的强度和抗热蠕变性),广泛应用于航空航天、海洋和化学应用[1, 2]。该合金以镍基为主,主要合金元素含量较高,包括:Cr、Mo、Nb、Ta、Fe。 Inconel 625 中的主要相是面心立方 γ 相,此外,根据位置、温度和化学成分的不同,还有 γ”、Ni 2 (Cr,Mo)、δ、碳化物、μ 和 laves 相[3]。用 Inconel 625 制造具有复杂形状的零件始终是一个巨大的挑战,因为 Inconel 625 具有低导热性、差的可加工性和高硬度[4, 5]。然而,Inconel 625 具有良好的可焊性,是高能加工方法的首选[6]。 3D 金属打印工艺是利用逐层金属沉积的方法根据数字模型(CAD 模型)制造零件的过程 [7, 8]。在过去的十几年中,利用金属粉末和激光束作为热源的金属3D打印工艺可以生产形状复杂的金属零件,不仅在基础研究而且在工业应用中得到了广泛的应用[9,10]。
生物可吸收电子设备作为临时生物医学植入物,代表了一类新兴技术,与目前需要在使用一段时间后进行手术移植的一系列患者病症相关。要获得可靠的性能和良好的降解行为,需要能够作为封装结构中生物流体屏障的材料,以避免有源电子元件过早降解。本文提出了一种满足这一需求的材料设计,其防水性、机械柔韧性和可加工性优于替代品。该方法使用由旋涂和等离子增强化学气相沉积形成的聚酐和氮氧化硅交替膜的多层组件。实验和理论研究调查了材料成分和多层结构对防水性能、水分布和降解行为的影响。电感电容电路、无线电力传输系统和无线光电设备的演示说明了该材料系统作为生物可吸收封装结构的性能。
镍基高温合金是能源和航空航天领域高温应用必不可少的材料。这些材料的增材制造 (AM) 可以为高温部件的设计、功能和制造带来显著益处。然而,由于 AM 制造过程中的开裂问题,只有少数材料经过了尝试和鉴定。本文对 Haynes 282 通过激光粉末床熔合 (LPBF) 的可加工性和性能进行了初步评估,这是一种相对较新的镍基高温合金,其性能优于许多传统的锻造高温合金。结果表明,通过全密度 LPBF 可以制造无裂纹的 Haynes 282。尽管具有明显的各向异性,但其室温下的机械性能超过了参考材料在制造和热处理条件下的性能。 800 ◦ C 下的机械性能表明,LPBF 热处理的 Haynes 282 的屈服强度与参考材料相当,但延展性显著降低。良好的应力断裂性能也表明 Haynes 282 是增材制造的理想选择,特别是如果可以针对增材制造的成品微观结构重新设计热处理工艺。
摘要:声学显微镜和声镊在微粒操控、生物医学研究和无损检测等领域有着重要的应用价值。超高频超声换能器是声学显微镜的关键部件,而声镊和声透镜又是超高频超声换能器的重要组成部分,因此声透镜的制备至关重要。硅具有声速高、声衰减小、可加工性好等特点,是制备声透镜的合适材料。前期研究中硅透镜主要采用刻蚀法制备,但刻蚀存在一些缺点,大尺寸刻蚀工艺复杂、耗时长、成本高,且垂直刻蚀优于球面刻蚀。因此,本文介绍了一种新的超精密加工方法来制备硅透镜。本文制备了口径为892 μm、深度为252 μm的硅透镜,并基于硅透镜成功制备了中心频率为157 MHz、−6-dB带宽为52%的超高频超声换能器。换能器焦距为736μm,F数约为0.82,换能器横向分辨率为11μm,可以清晰分辨硅片上13μm的狭缝。
激光金属沉积 (LMD) 是一种增材制造工艺,在制造和修复复杂功能部件方面表现出色。然而,为了提高表面质量和材料性能,生产的部件需要传统的机加工操作。由于样品在构建过程中受到高度局部的热输入,生产的部件中可能会出现局部材料性能的显著变化。这可能会影响 LMD 工艺生产的部件的可加工性。本研究旨在研究铣削工艺及其对 LMD 工艺生产的 Ti-6Al-4V 部件的表面完整性的影响。进行热处理是为了使材料的微观结构均匀化。以传统的 Ti-6Al-4V 作为参考材料样品。根据切削工艺参数,加工后的 LMD 部件的切削力和表面粗糙度分别比传统样品高 10-40% 和 18-65%。加工后的 LMD 样品中的压缩残余应力比传统样品高 11-30%。这些差异与测试部件之间的微观结构和晶粒尺寸差异有关。© 2020 作者。由 Elsevier BV 出版 这是一篇根据 CC BY-NC-ND 许可开放获取的文章(http://creativecommons.org/licenses/by-nc-nd/4.0/)由第五届 CIRP CSI 2020 科学委员会负责同行评审
实施电弧定向能量沉积需要开发新型、工艺适应性强的高性能铝合金。然而,传统的高强度合金难以加工,因为它们容易产生热裂纹。基于 Al-Mg-Zn 的交叉合金结合了良好的可加工性和人工时效后的良好机械性能。在这里,我们提出了一种使用 Ag 微合金化进一步改善 Al-Mg-Zn 交叉合金机械性能的努力。在样品中没有观察到裂纹和少量孔隙。微观结构以细小和球状晶粒为主,晶粒尺寸为 26.6 l m。晶粒结构基本上没有纹理,包含细小的微观偏析区,偏析缝厚度为 3-5 微米。经热处理后,这些微观偏析区溶解,并形成 T 相沉淀物,这通过衍射实验得到澄清。该沉淀反应导致显微硬度为 155 HV0.1,屈服强度分别为 391.3 MPa 和 418.6 MPa,极限拉伸强度分别为 452.7 MPa 和 529.4 MPa,横向和纵向断裂应变分别为 3.4% 和 4.4%。所得结果表明,可以使用新开发的铝交叉合金通过电弧直接能量沉积制造高负荷结构。
由于成本低、易于制造以及可在大面积环境条件下制造,在不同柔性基板上制造电子设备是一个备受关注的领域。随着时间的推移,已经开发出许多印刷技术,可根据目标应用在非传统基板上制造各种电子设备。随着电子行业对印刷电子产品的兴趣日益浓厚,预计在不久的将来印刷技术将进一步扩展,以应对该领域在可扩展性、产量、多样性和生物相容性方面的挑战。本章全面回顾了常用于制造电子设备、电路和系统的各种印刷电子技术。已经探索了基于印刷工具与目标基板的接触/非接触方法的不同印刷技术。这些技术的评估基于操作的简易性、印刷分辨率、材料的可加工性和印刷结构的优化简易性。重点介绍了印刷技术中的各种技术挑战、它们的解决方案和可能的替代方案以及潜在的研究方向。还探讨了组装各种印刷工具的最新发展,以实现通过卷对卷系统进行高速和批量生产。