摘要由于批处理数据处理的无处不在,计划可延展的批处理任务的相关问题受到了极大的关注。我们考虑了一个基本模型,其中一组任务要在多个相同的机器上处理,并且每个任务均由值,一个工作负载,截止日期和并行性约束。在平行性界限内,分配给任务的机器数量会随着时间而变化而不会影响其工作负载。在本文中,我们确定了边界条件,并通过构造证明一组具有截止日期的可延展任务可以通过其截止日期来完成,并且仅当它满足边界条件时。该核心结果在调度算法的设计和分析中起关键作用:(i)考虑到几个典型的目标,例如社交福利最大化,机器最小化和最小化最大加权完成时间,以及(ii)当算法和动态编程等算法技术技术时,会适用于社交范围。结果,我们为上述问题提供了四种新的或改进的算法。
教学和图形设计师 一年期合同,可续约 埃格蒙特集团成立于 1995 年,由 177 个金融情报机构 (FIU) 组成。埃格蒙特集团为打击洗钱和恐怖主义融资 (ML/TF) 提供了一个安全交流专业知识和金融情报的平台。这一点尤其重要,因为金融情报机构在合作和支持国家和国际打击恐怖主义融资方面具有独特的优势,并且是根据全球反洗钱和打击恐怖主义融资 (AML/CFT) 标准在国内和国际上共享金融信息的可信门户。埃格蒙特集团秘书处 (EGS) 为金融情报机构负责人、埃格蒙特委员会、工作组和区域组提供战略、技术和行政支持,并协助管理埃格蒙特安全网络内开放社区上发布的内容。EGS 由执行秘书领导,直接向埃格蒙特集团主席汇报。埃格蒙特集团秘书处成立于 2007 年 7 月,总部位于加拿大渥太华。埃格蒙特金融情报机构卓越与领导力中心 (ECOFEL) ECOFEL 的创建旨在成为进一步协助金融情报机构追求卓越和领导力的引擎和枢纽。ECOFEL 自 2018 年 4 月开始活跃。它完全融入埃格蒙特集团,位于加拿大埃格蒙特集团秘书处内。认证计划 ECOFEL 金融情报机构认证计划(电子学习)将确保金融情报机构能够满足其在国内和国际上发挥关键作用的要求。认证计划的三个主要目标是:
简介 1 型糖尿病 (T1D) 的发病机制涉及胰岛内多种细胞类型之间的复杂相互作用,包括先天免疫细胞(巨噬细胞、树突状细胞)、胰岛素分泌细胞(β 细胞)和适应性免疫细胞(T 细胞、B 细胞)(1)。尽管传统上认为该疾病是由免疫耐受的原发性缺陷引起的,但一种新兴观点认为,环境因素(如病毒或其他全身性炎症性疾病)可能会加剧巨噬细胞和 β 细胞之间的相互作用,促进 β 细胞中的氧化和内质网 (ER) 应激途径 (2–4)。这些途径促进 β 细胞新表位的产生,进而引发适应性自身免疫 (5, 6)。疾病改良疗法(改变疾病发病机制而不是纠正潜在疾病表型的疗法)主要集中于适应性免疫系统,并在临床试验中取得了一些成功。例如,针对活化 T 细胞的抗 CD3 单克隆抗体 (teplizumab) 已被证明可将高危人群的 1 型糖尿病发病时间延迟长达 2 年 (7)。鉴于先天免疫细胞和 β 细胞在 1 型糖尿病早期发病机制中的作用越来越受到重视,针对这些细胞类型的药物的鉴定提出了联合治疗方法可能提供更持久疗效的可能性。脂氧合酶 (LOX) 包含一个参与脂质代谢的酶家族,可促进多不饱和脂肪酸的氧合形成二十烷酸,其中一些具有促炎性质 (8)。在小鼠中,12/15-LOX 由 Alox15 基因编码,是巨噬细胞和 β 细胞中存在的主要活性 LOX,并产生促炎性二十烷酸 12-羟基二十碳四烯酸 (12-HETE) 作为底物花生四烯酸的主要产物 (9)。 Alox15 的整体删除
全新早衰症测试可更快测量治疗效果,并揭示 Lonafarnib 可延长寿命!PRF 在新疗法和治愈方面取得的显著进展仍在继续:我们的医学总监 Leslie Gordon 博士和她的团队首次发现,导致早衰症的毒性蛋白质早衰素在血液中存在且可检测到。鉴于此,该团队开发了一种早衰素血液测试,为我们提供了全新的早衰症生物标志物。该生物标志物显示,仅使用 lonafarnib 四个月后,早衰素水平就下降了 40% 以上。如果未来的临床试验药物可以进一步降低早衰素血液水平,研究人员可能能够找到更好的治疗方法。早衰素血液测试肯定有助于加快未来的治疗和治愈发现!
微粗糙度和低表面能防冰表面因具有超疏水和低冰亲和力而受到研究人员的极大兴趣。然而,通过模板法快速制备未开发微结构的超疏水表面 (SHS) 一直是进一步应用的瓶颈。在这项工作中,将负载石墨烯 (GP) 作为磁性纳米粒子的四氧化三铁 (Fe 3 O 4 ) 引入聚丙烯 (PP) 基质中,作为超疏水防冰/除冰表面的热载体。通过微注射成型和磁引力相结合的方法制备微结构 PP/GP/Fe 3 O 4 表面。使用多物理场耦合模型对具有磁引力的定向粒子迁移进行分析。磁引力使微柱的高度从~85 μ m 增大到~150 μ m,使表面保持较高水接触角(~153 ◦)和稳定的空气腹板,以便液滴以 1 ms-1 的初速度重复撞击。对于发育成熟的微柱,可以通过延长光路来更有效地吸收光以进行多次反射。与纯 PP 表面相比,在强度为 1 kW m-2 的一次太阳辐照下,复合材料表面的光热性能表明,温度在 67 秒内从环境温度升高到 94 ◦ C,而冰粘附强度在同期从~30 降低到~9 kPa。磁性粒子的光热功效可延长 SHS 结冰时间。由于 SHS 对室外注塑件具有出色的被动防冰和主动除冰性能,预计其将有望在制造中实际应用。
稳定的 HIV 包膜 (Env) 三聚体蛋白免疫原已被证实能诱导强烈的自体中和抗体反应。然而,关于由病毒载体免疫原表达的稳定 Env 的免疫原性和效力的数据有限。在这里,我们比较了两种基于可变环 2 热点 (V2 HS) 优化的 C.1086 包膜 (Env) 序列的改良安卡拉痘苗 (MVA) 疫苗的免疫原性和效力,一种表达膜锚定 gp150 (MVA-150),另一种表达可溶性未裂解融合前优化 (UFO) gp140 三聚体 (MVA-UFO),以 DNA 引发/MVA 加强方法对抗恒河猴 (RM) 中的异源 2 级 SHIV1157ipd3N4 直肠内攻击。两种 MVA 疫苗也表达 SIVmac239 Gag 并形成病毒样颗粒。DNA 疫苗表达 SIVmac239 Gag、C.1086 gp160 Env 和恒河猴 CD40L 作为内置佐剂。此外,所有免疫接种均采用皮内 (ID) 方式进行,以减少疫苗特异性 IFN g + CD4 T 细胞反应的诱导。我们的结果表明,MVA-150 和 MVA-UFO 疫苗均在血清和直肠分泌物中诱导了类似的 Env 特异性 IgG 反应。疫苗诱导的血清抗体显示出针对攻击病毒的 ADCC 和 ADCVI 活性。与之前通过肌肉内途径 (IM) 使用类似免疫原的研究相比,ID 免疫诱导的 SHIV 特异性 CD4 和 CD8 T 细胞反应明显低于 IM 免疫。攻击后,MVA-UFO 接种
引言周围动脉疾病(PAD)是血流流向下肢的结果,影响了全球超过2亿人,并且赋予了心血管发病率和凡人的风险增加(1,2)。尽管许多患者无症状,但其他患者则会出现症状表现,例如随着步行而进行间歇性clauraudication(不适和疼痛)。这些PAD患者中的子集(1%–2%)会出现临界肢体缺血(CLI),这是PAD的最严重表现(3)。CLI的特征是慢性休息疼痛,溃疡和坏疽的发育,伤口愈合受损以及与下肢截肢(10%–40%)的高风险(10%–40%)和心血管死亡(20%)在诊断后的第一年(3-5)(3-5)。与进展到CLI相关的风险因素包括吸烟,年龄,高血压,血脂异常,成年肾病和糖尿病(DM)。特别是,与没有DM的患者相比,患有PAD和DM的患者患心血管和肢体事件的风险高20% - 30%(6)。的确,DM已被证明会损害血管生成,即先前存在的血管生长(7)。高血糖会损害血管生成涉及的几种不同细胞类型,包括内皮细胞(ECS)和白细胞(8、9)。在鼠实验垫中,大量的研究表明单核细胞募集至关重要的作用
引入严重的SARS-COV-2感染后死亡与抗病毒反应和免疫介导的肺损伤主要有关(1)。在组织病理学上,covid-19肺炎与弥漫性肺泡损伤(DAD),纤维化,白细胞浸润和微血管血栓形成有关(2-4)。爸爸的特征包括肺泡壁增厚,间质膨胀,透明膜沉积和肺细胞增生。研究人员已经开始描述肺病理学的转录组特征,尽管这些曲线旨在评估SARS-COV-2感染的细胞影响(5-7)。据我们所知,后期严重的器官病态与高水平的感染或活性病毒复制不一致(8、9)。在严重病例的肺组织中,检测SARS-COV-2 RNA或抗原的可变性支持了一种炎症的疾病模型(5,9)。与广泛的严重肺泡损伤相关的免疫贡献者和生物途径尚不清楚;因此,对COVID-19的病理特征有更深入的了解将补充组织和血液基免疫特征的知识越来越多(10)。先进的空间分析技术提供了识别原位蛋白质和RNA分布的工具,从而可以在感兴趣的特定组织学特征中及其周围解剖生物学过程(BPS)(11,12)。我们使用了高级,多重的ISH组织分析平台,以从3例患者的肺样本中多个空间离散区域的多个空间离散区域发电
1 德国柏林夏里特医学院和马克斯德尔布吕克分子医学中心实验与临床研究中心,邮编 13125; elisa.ciraolo@charite.de(欧盟); stefanie.althoff@charite.de (SA); josefine.russ@bih-charite.de(JR); monique.butze@charite.de (MB); miriam.puehl@charite.de(国会议员); lars.bullinger@charite.de (LB) 2 柏林夏里特医学院血液学、肿瘤学和肿瘤免疫学系,柏林自由大学、柏林洪堡大学和柏林健康研究所的企业成员,德国柏林 10117; stanislav.rosnev@charite.de (SR); marco.frentsch@bih-charite.de (MF) 3 柏林夏洛特大学再生疗法健康中心研究所,柏林 13353,德国 4 德国癌症联盟 (DKTK),柏林 10117,德国 * 通信地址:il-kang.na@bih-charite.de † 这些作者对这项工作做出了同等贡献。
亨廷顿舞蹈症 (HD) 是一种目前无法治愈的致命神经退行性疾病,由亨廷顿 (HTT) 基因外显子 1 内的 CAG 三核苷酸重复扩增引起,从而产生一种突变蛋白,这种突变蛋白形成内含物并选择性破坏纹状体和其他相邻结构中的神经元。来自 CRISPR-Cas9 系统的 RNA 引导的 Cas9 内切酶是一种诱导 DNA 双链断裂的多功能技术,可刺激引入移码诱导突变并永久性地禁用突变基因功能。在这里,我们展示了来自金黄色葡萄球菌的 Cas9 核酸酶,一种小的 Cas9 直系同源物,可以与单个引导 RNA 一起包装到单个腺相关病毒 (AAV) 载体中,可用于在体内递送至纹状体后破坏 R6/2 小鼠 HD 模型中突变 HTT 基因的表达。具体来说,我们发现 CRISPR-Cas9 介导的突变 HTT 基因破坏导致神经元内含物减少 50%,并显著延长寿命和改善某些运动障碍。因此,这些结果说明了 CRISPR-Cas9 技术通过体内基因组编辑治疗亨廷顿氏病和其他由三核苷酸重复扩增引起的常染色体显性神经退行性疾病的潜力。
