大规模并网锂离子电池正越来越多地被部署,以支持可再生能源在电网中的推广。这些电池系统由数千个单个电池和各种用于监测和控制的辅助系统组成。尽管许多研究都集中在单个锂离子电池的行为上,但系统设计选择和辅助系统控制对这些包含数千个电池的系统长期退化和效率的影响却很少被详细考虑。在这里,我们模拟了一个 1 MWh 电网电池系统,该系统由 18,900 个单个电池组成,每个电池都由一个单独的电化学模型表示,以及热管理系统和电力电子转换器。对电池间变异性、热效应和退化效应的影响的模拟运行了长达 10,000 次循环和 10 年。结果表明,电接触电阻和电池间初始容量和电阻的变化对性能的影响比以前认为的要小。相反,单个电池的退化率变化在整个生命周期内主导着系统行为。证明了谨慎的热管理系统控制的重要性,比例控制比开关方法提高了 5% 点的整体效率,并且在 10 年后将电池的总可用能量提高了 5% 点。
摘要:锂离子电池(LIB)具有高能量/功率密度,低自我放电速率和较长循环寿命的优势,因此被广泛用于电动汽车(EVS)。但是,在低温下,Libs的峰值功率和可用能量急剧下降,充电期间锂镀层的风险很高。这种不良的性能显着影响电动汽车在寒冷天气中的应用,并极大地限制了高纬度地区的电动汽车的促进。最近这项挑战引起了很多关注,尤其是调查低温下LIB的性能下降并探索解决方案。但是,在此主题上存在有限的评论。在这里,我们彻底回顾了有关电池性能降低,建模和预热的最新技术,旨在推动有效的解决方案来解决LIBS的低温挑战。我们概述了在低温下LIB的性能限制,并量化了在低温下LIB的(DIS)充电性能和电阻的显着变化。考虑到低温影响因素的各种模型也被制表和总结,并改进了描述低温性能的建模。此外,我们对现有的加热方法进行了分类,并强调诸如供暖率,能耗和终生影响等指标,以提供对加热方法的基本见解。最后,概述了当前关于低温LIB的研究的局限性,并提供了未来研究方向的前景。
I. 引言 电力电子逆变器在各种工业驱动应用中越来越受欢迎。从技术角度来看,使用电子功率转换器引入了新的挑战性问题,例如拓扑复杂性、额外的功率损耗和电磁干扰 (EMI),从而降低了系统的整体服务质量、效率和稳定性。为了克服这些缺点,研究人员提出了新的控制拓扑或修改现有的拓扑,以提高逆变器端子的可用能量。其中,正弦脉冲宽度调制 (SPWM) 级联多级替代了当前的逆变器拓扑。级联功率设备,从而克服了它们的电压限制并减少了谐波。MLC 拓扑主要有三种:中性点钳位、级联 H 桥和飞跨电容器 (FC)。通常,需要串联连接四到十二个逆变器才能达到所需的输出电压。MLI 设计的一个主要问题是其控制的复杂性。在过去的十五年里,模糊逻辑 (FL) 被成功采用。它主要用于逆变器控制和调制技术,主要用于直流/交流转换器领域。级联功率器件,从而克服了它们的电压限制并降低了谐波。本文提出了基于模糊的级联多电平逆变器,以实现低谐波失真、降低功率损耗、成本效益高、波形清晰以及电压稳定性。使用 MATLAB/SIMULINK 对所提出的方法进行了仿真。
该术语定义为辅助服务一组用于确保电力系统(特别是输配电网)可靠运行的操作。备用电源备用电源 - 电池储能系统,可以与本地发电机配对使用,也可以单独使用,在电网发生故障并与电网隔离时为客户住宅、商业或工业场所的负载供电。电池储能系统有助于实现客户有意孤岛,直到电网恢复或可用能量耗尽。黑启动黑启动 - 电池储能系统通过给输电线通电来恢复部分电网的运行,或为大型发电站的运行提供补充电力,以在系统范围的故障(通常称为停电)后开始恢复电网的过程。需求响应客户通过降低电力消耗来响应来自公用事业系统运营商的可靠性触发或价格触发的能力。可调度 根据从控制中心收到的信号改变系统参数或输出的能力 分布式能源存储 在此背景下,涉及不集中在 T&D 系统中的电池储能系统,即与变电站储能分开 能源套利 涉及在系统边际成本相对较低的时期对电池储能系统充电,然后在系统边际成本较高的时期对电池储能系统放电 能源转移 涉及通过存储并在稍后释放将 T&D 系统上的能量从一个时间段转移到另一个时间段。在有剩余的情况下,也可以对电池储能系统进行充电
电动汽车 (EV) 是低碳排放和可持续交通未来的重要组成部分。电动汽车在交通运输中的应用正在迅速增长,全球电动汽车数量将从 2012 年的 12 万辆增加到 2021 年的 600 多万辆 [1]。目前电动汽车最主要的储能技术是锂离子电池 (LIB)。由于锂库存的损失、活性材料的损失以及循环过程中固体电解质中间相的形成,电动汽车 LIB 会随着时间的推移和使用而退化,表现为可用容量的损失、内阻的增加,最终导致设备可用能量和功率的降低 [2]。当 LIB 在电动汽车运行中无法再提供令人满意的性能时,它们就会退出使用。退役的电动汽车锂离子电池可以重新用作“二次生命”的储能系统 (ESS),用于电网 [3],支持间歇性可再生能源生产源,如太阳能光伏 (PV) 和风力涡轮机,以满足低碳排放电网的电力负荷消耗。二次使用后,锂离子电池可以被拆卸并回收成新的锂离子电池 [4],形成锂离子电池的循环、低浪费经济 [5]。电网规模储能系统的需求和退役电动汽车锂离子电池的二次生命供应量都将扩大,尤其是随着电动汽车的大规模采用和电网电气化。到 2030 年,二次生命锂离子电池的供应量预计将超过每年 200MWh,以满足预计每年 183MWh 的电网规模储能系统需求 [6]。
氢是地球上数量最多、最简单的元素。它可以储存和释放可用能量。然而,氢并不单独存在于自然界中,必须由包含它的不同元素制成。例如,它可以与碳(如石油、天然气)和水中的氧(H 2 O)结合[1]。氢的每千克比能量是所有燃料中最高的(即 120-140 MJ/kg),但其能量密度不太适合储存(即 2.8-10 MJ/L),具体取决于物理储存方式(如压缩(350-700 bar)、液体)[2]。一方面,全球利用重整工艺从天然气、煤炭和石油中生产的氢气约占 96%。另一方面,利用水电解工艺将去离子水分解为氢气和氧气约占全球氢气产量的 4% [3]。尽管氢气本质上是一种清洁的能源,但它需要能量来生产;所采用的能源类型有所不同。由化石燃料生产的氢气由于间接污染而被称为灰氢。为了供应水电解过程,可再生能源 (RES)(例如风力涡轮机、光伏)是最适合的,因为它们可以限制对环境的影响。通过这种方式,可以获得所谓的绿色氢气。将这种氢气混合到现有的天然气管道网络中已被提议作为增加可再生能源系统产量的一种手段。通过管道输送氢气和甲烷混合物也有悠久的历史;最近,风电装机容量的快速增长以及对燃料电池电动汽车近期市场准备的关注,增加了利益相关者的兴趣 [ 4 , 5 ]。
当今,发电厂工程师主要关注如何最大限度地提取燃料能量。这一目标涉及根据热力学第一定律和第二定律提高不同热力学要素和整个循环的效率。为实现这一目标,工程师们采用了各种旨在提高这些效率的技术。在目前的研究中,所使用的一种技术是用不同的工作流体替代水/蒸汽。通过改变工作流体,工程师们旨在优化发电厂的热力学性能。在本研究中,分析重点是氨水混合物与跨临界二氧化碳在热回收蒸汽发生器中的应用。研究结果表明,实现的最高功输出和第二定律效率分别为 1192 kJ/秒和 81.68%。当顶部循环压力设置为 50 bar,并且涡轮机入口温度分别为 500°C 和 300°C(氨水混合物和跨临界二氧化碳)时,可获得这些最佳值。此外,当顶循环压力设置为 50 bar、底循环压力设置为 160 bar 且涡轮机入口温度为 300°C 时,可观察到 43.57% 的最大第一定律效率。分析还表明,热源是造成大部分能量破坏的原因,在 500°C 的温度下,最多有 1970 kJ/秒的可用能量被破坏。为了实现热力学性能参数的最高值,建议在吸收器和冷凝器中保持低压。此外,分析表明,当冷凝器压力设置为 70 bar 时,发电成本达到峰值,达到 0.050 美元/千瓦时。
到 2030 年 阿姆斯特丹和德克萨斯州休斯顿 – 2024 年 12 月 5 日 – Stellantis NV 和 Zeta Energy Corp. 今天宣布了一项联合开发协议,旨在推进电动汽车应用的电池技术。此次合作旨在开发具有改变游戏规则的重量能量密度的锂硫电动汽车电池,同时实现与当今锂离子技术相当的体积能量密度。对于客户而言,这意味着电池组可能重量更轻,但可用能量与当代锂离子电池相同,从而实现更大的续航里程、更好的操控性和更高的性能。此外,该技术还有望将快速充电速度提高 50%,使电动汽车的拥有更加便捷。预计锂硫电池每千瓦时价格将不到目前锂离子电池的一半。Stellantis 首席工程和技术官 Ned Curic 表示:“我们与 Zeta Energy 的合作是我们推进电气化战略的又一步,我们致力于提供清洁、安全和价格合理的汽车。” “锂硫等突破性电池技术可以支持 Stellantis 实现 2038 年实现碳中和的承诺,同时确保我们的客户享受最佳续航里程、性能和经济实惠。” “我们非常高兴能与 Stellantis 合作开展这个项目,”Zeta Energy 首席执行官 Tom Pilette 表示。“Zeta Energy 的锂硫电池技术与 Stellantis 在创新、全球制造和分销方面无与伦比的专业知识相结合,可以显著提高电动汽车的性能和成本状况,同时提高电池和电动汽车的供应链弹性。” 这些电池将利用废料和甲烷生产,二氧化碳排放量远低于任何现有电池技术。Zeta Energy 电池技术旨在在现有的超级工厂技术内制造,并将利用欧洲或北美的短而完全国内的供应链。
摘要:在电动汽车中,电池和模块电压均衡在电池管理系统 (BMS) 中起着至关重要的作用。电动汽车电池组的电池和模块中的容量、温度和老化不平衡限制了可输送到车辆的电量。受此问题的启发,我们提出了一种称为混合平衡的新型电池平衡系统,该系统能够同时均衡电池容量,同时实现电池级被动平衡和模块级主动平衡的成本效益,模块由多个串联连接的电池组成,电池级被动平衡在模块中执行,模块级开关电容器在模块之间执行主动平衡。该策略被称为混合平衡,因为它追求的目标超越了传统的充电状态均衡,包括温度和功率能力均衡,以及最小化能量损失。提供了在锂离子电池组上实施的混合平衡系统的设计细节和 MATLAB Simulink 仿真结果。关键词:电动汽车、混合平衡、电池平衡、汽车系统简介充电电池已广泛应用于电信行业、电动汽车和可再生能源存储系统等许多领域,以满足对能源存储系统的需求。由于大多数应用中单个电池单元的端电压较低,因此通常通过将电池串联来形成电池组以达到所需的电压水平。然而,电池组中的电池单元之间存在众所周知的不平衡。电池间充电状态 (SoC) 差异是一种众所周知的不平衡 (Aizpuru 等人,2013)。电池单元之间的差异由内在和外在原因造成 (Jonghoon 等人,2012)。内在差异主要是制造工艺变化造成的。不可能制造出两个具有完全相同属性的电池。由于容量、自放电率和内阻的差异,电池性能在运行过程中会有所不同。温度和外部电路的影响是外部变量。电池组温度分布不均匀会影响电池的特性,从而导致性能变化 (Belt et al., 2005)。电动汽车 (EV、PHEV、HEV) 使用高压 (HV) 牵引电池组,该电池组由多个串联的电池单元组成。各个电池单元的容量、内阻和运行时充电状态 (SOC) 各不相同,因此电池管理系统必须包括电池平衡 (BMS) (Smith et al., 2016)。在实践中,被动平衡被认为是电动汽车锂离子电池组中最具成本效益且最常用的方法 (Chan et al., 2001)。BMS 由一系列特殊的电池监控和被动平衡电路 (IC) 组成,这些电路可感测单个电池电压并通过 BMS 控制器发出的分流电阻命令激活电池放电。传统被动平衡系统的一个缺点是整个电池组的可用能量容量由最弱的电池决定 (Baumhöfer 等人,2014)。由于电池之间退化不均匀,最弱电池的问题会随着时间的推移而恶化,从而缩短电池寿命 (Smith 等人,2016)。