心电图(ECG)是最常用的非侵入性,方便的医学监测工具之一,可帮助心脏病的临床诊断。最近,深度学习(DL)技术,尤其是自我监督的学习(SSL),已经在ECG的分类中发挥了巨大的潜力。SSL预训练在微调后仅通过少量注释的数据实现了效率性能。但是,当前的SSL方法依赖于注释数据的可用性,并且无法预测微调数据集中不存在的标签。为了应对这一挑战,我们提出了最终的ECG-T Ext s Ext s-Elf Sup-pre-Pre-Training(METS),这是使用自动生成的临床报告的第一项工作,以指导ECG SSL Pre-Training。我们使用可训练的心电图编码器和冷冻语言模型来分别嵌入配对的ECG并自动机器生成的临床报告。SSL旨在最大化配对的ECG和自动生成报告之间的相似性,同时最大程度地减少ECG和其他报告之间的相似性。在下游分类任务中,METS与依赖于注释数据的其他监督和SSL基线相比,在不使用零摄像机分类的情况下使用任何带注释的数据,就可以提高10%的性能。此外,尽管MIT-BIH与预先训练的数据集相比,METS在MIT-BIH数据集上达到了最高的回忆和F1分数。广泛的实验证明了在可推广性,有效性和效率方面使用ECG-TEXT多模式自学学习的优势。关键字:多模式的自我监督学习,零照片学习,语言模型,ECG,信号处理
摘要 - 在线金融新闻的多种来源会影响市场的变动和交易者的决策。这强调了对准确的情感分析的必要性,除了拥有适当的算法交易技术之外,还需要做出更好的知情交易决策。标准词典的情感方法已经证明了他们在协助财务决策方面的权力。但是,众所周知,它们遭受与上下文灵敏度和单词顺序相关的问题。大型语言模型(LLM)也可以在这种情况下使用,但它们不是特定于金融的,并且倾向于需要大量的计算资源。为了促进特定于财务的LLM框架,我们介绍了一种基于Llama 2 7b基础模型的新方法,以便从其生成性质和综合语言操纵中受益。这是通过在一小部分监督财务情感分析数据上微调Llama2 7b模型来实现的,以共同处理金融词汇和环境的复杂性,并进一步为其提供基于神经网络的决策机制。这样的生成器分类器计划(称为Finllama)不仅受过培训,不仅是为了对情感造成分类,而且还量化了其实力,从而为交易者提供了对金融新闻文章的细微洞察力。补充这一点,通过洛拉(Lora)进行参数有效的微调实现,优化了可训练的参数,从而最大程度地降低了计算和内存需求,而无需牺牲准确性。索引术语 - 大语言模型,财务,情感分析,算法交易,参数有效的微调仿真结果证明了拟议中的Finllama提供了增强投资组合管理决策和增加市场收益的框架的能力。这些结果基于Finllama建造高回报投资组合的能力,即使在动荡的时期和不可预测的市场事件中,也表现出增强的弹性。
上下文。准确的模拟晕圈目录是用于开发和验证宇宙学推断管道的必不可少的数据产品。生成模拟目录的一个主要挑战是对光环或星系偏置进行建模,这是从物质密度到暗物质光环或可观察的星系的映射。为此,n个体代码生成了最先进的目录。然而,为大容量的大量N体模拟产生了大量的N体模拟,尤其是在包括磁水动力学的情况下,需要大量的计算时间。目标。我们介绍和基准测试了一个可区分和物理信息的神经网络,该网络可以生成与从完整的N体代码获得的模拟光环目录相当的质量。模型设计在训练程序和大型模拟目录套房的生产上具有计算有效的效率。方法。我们提出了一个神经网络,仅依靠18至34个可训练的参数,该参数可从暗物质过度密度场中产生光环目录。通过将首先原理动机的对称性纳入我们的模型体系结构来实现网络权重的减少。我们使用不同分辨率,红移和大型垃圾箱的仅黑色n体模拟训练了我们的模型。我们使用不同的n点相关函数将最终模拟目录与N体晕目录进行了比较,从而验证了最终模拟目录。结果。此外,我们发现该网络可以在近似密度字段上进行培训,以进一步降低计算成本。我们的模型生成了与参考模拟一致的模拟光环目录,这表明该新型网络是生成模拟数据的一种有希望的方法,该数据由于其计算效率而即将进行的宽场调查。我们还介绍了如何解释训练有素的网络参数,以洞悉结构形成的物理。最后,我们讨论了我们的模型的当前局限性,以及从这项研究中可以明显看出的近似Halo模拟产生的一般要求和陷阱。
随着基于扩散的[12,41]文本到图像生成技术的进步,一系列单条件可控的生成框架(例如ControlNet [58],T2-IADAPTER [30],IP-ADAPTER [57]和INSTANTID [46]和INTSTANTID [46]已经扩展了控制信号的范围,该框架已扩展了从字体提示中扩展了控制信号的范围。它允许用户控制生成的图像的更详尽的方面,例如布局,样式,特征等。这些常规方法是专门为UNET [37]主骨的主干(LDM)[36]设计的,具有专用的控制网络。此外,最近的一些方法,例如Imini-Control [44],将控制信号集成到扩散变压器(DIT)[7,22]体系结构中,它们与LDM中的UNET相比表现出了出色的性能。尽管上述方法达到了有希望的单条件性能,但多条件可控生成的挑战仍未解决。以前的多条件生成方法(例如Uni-Control [34]和Unicontrolnet [59]通常依赖于处理诸如Chany或Depth Maps之类的空间条件,并且无法适应受试者条件,从而导致适用的情况有限。尽管最近提出的CTRL-X [26]具有控制结构和外观,但其性能并不令人满意,并且仅支持有限的条件组合。因此,统一框架需要以多条件生成的方式包含这些生成任务。通过集成多个pre-此外,我们假设许多现有的生成任务可以被视为多条件的一代,例如虚拟试验[5,16],对象插入[3,50],样式传输[14,32,51],空间分配的自定义[19,20,24,26]等该框架应确保与所有输入约束的一致性,包括主题ID保存,空间结构对齐,背景连贯性和样式均匀性。为了实现这一目标,我们提出了Unicombine,这是一个提供多个关键范围的能力和通用框架:首先,我们的框架能够同时处理任何条件组合,包括但不限于文本提示,空间图和下图图像。具体来说,我们引入了一种新颖的条件MMDIT注意机制,并结合了可训练的DeNoisis-Lora模块,以构建无训练和基于培训的版本。
摘要:中手势界面已在特定场景中流行起来,例如通过头戴式显示器与增强现实的交互、通过智能手机或游戏平台进行特定控制。本文探讨了使用位置感知的基于空中手势的命令三元组语法与智能空间进行交互。该语法的灵感来自人类语言,构建为具有命令结构的呼格。在“请打开灯!”这样的句子中,通过模仿其首字母/首字母缩略词(呼格,与句子的省略主语一致)的手势来调用被激活的对象。然后,几何或方向手势识别动作(命令式动词),可能包括对象特征或要与之联网的第二个对象(补语),也由首字母或首字母缩略词表示。从技术上讲,依赖于可训练的多设备手势识别层的解释器使对/三元组语法解码成为可能。识别层适用于可抓取设备(智能手机)和自由手持设备(智能手表和外部深度摄像头)以及特定编译器的加速度和位置输入信号。在 Living Lab 设施的特定部署中,语法已通过使用源自英语的词典(关于首字母和首字母缩略词)进行实例化。对 12 名用户的受试者内分析使我们能够分析手势语法在其三种设备实现(可抓取、可穿戴和无设备)中的语法接受度(就可用性、手势对物体动作的一致性和社会接受度而言)和技术偏好。参与者对学习语法的简单性及其在管理智能资源方面的潜在有效性表示了共识。在社交方面,参与者倾向于在户外活动中使用手表,在家庭和工作环境中使用手机,强调了社交背景在技术设计中的重要性。由于其效率和熟悉度,手机成为手势识别的首选。该系统可适应不同的传感技术,解决了可扩展性问题(因为它可以轻松扩展到新对象和新动作)并允许个性化交互。
抽象蛋白质工程是合成生物学的关键方面,涉及现有蛋白质序列中氨基酸的修改12,以实现新颖或增强的功能13和物理性能。准确预测蛋白质变异效应需要彻底了解蛋白质序列,结构和功能。深度学习方法在指导蛋白质修饰方面具有出色的性能,可改善16个功能。然而,现有方法主要依赖于蛋白质序列,蛋白质序列在有效地编码氨基酸局部环境的几何方面时面临17个挑战,而18通常在捕获与蛋白质折叠稳定性,内部分子19相互作用和生物功能有关的关键细节方面经常缺乏。此外,在预测蛋白质热稳定性方面的20种方法中缺乏基本评估,尽管它是一种关键的物理特性,在实践中经常研究21种。为了应对这些挑战,本文介绍了一个新颖的22个预训练框架,该框架整合了蛋白质初级23和第三纪结构的顺序和几何编码器。该框架通过24模拟野生型蛋白上的自然选择来指导突变方向,并根据其25个效果来评估变异效应以执行特定功能。我们使用三个基准26评估提出的方法,其中包括300多个深突变扫描测定法。Pytorch 32实现可在https://github.com/tyang816/protssn上获得。33与其他零击28学习方法相比,预测结果在广泛的实验中展示了27个出色的表现,同时又在可训练的参数方面保持最低成本。这项29项研究不仅提出了一个有效的框架,以实现更准确,更全面的30个预测,以促进有效的蛋白质工程,而且还增强了Silico评估中的31系统,以使未来的深度学习模型更好地与经验要求保持一致。
抽象的客观定量敏感性映射(QSM)提供了使用磁共振(MR)相测量的组织磁化率的估计。通过数值求解逆源效应问题来估计MR相图像中测得的磁场分布/局部组织场(效应)的组织磁化率(源)。本研究旨在开发一个有效的基于模型的深度学习框架来解决QSM的反问题。材料和方法这项工作提出了带有可学习的范围参数P的schatten p-norm驱动模型的深度学习框架,以适应数据。与其他基于模型的体系结构相比,该结构强制执行l 2 -norm或l 1 -norm,而拟议的方法可以在可训练的正规机构上强制执行任何p -norm(0 结果将所提出的方法与基于深度学习的方法(例如QSMNET)和基于模型的深度学习方法进行了比较,例如学习的近端卷积神经网络(LPCNN)。 使用具有不同采集方案和临床条件的77次成像体积进行的重建,例如出血和多发性巩膜,表明所提出的方法在定量优点方面以显着的优势超出了现有的最新方法。 结论拟议的Spinet-QSM在高频误差规范(HFEN)和归一化的根平方误差(NRMSE)方面,至少提高了至少5%的持续改善,而与其他QSM重建方法相比,使用有限的训练数据。结果将所提出的方法与基于深度学习的方法(例如QSMNET)和基于模型的深度学习方法进行了比较,例如学习的近端卷积神经网络(LPCNN)。使用具有不同采集方案和临床条件的77次成像体积进行的重建,例如出血和多发性巩膜,表明所提出的方法在定量优点方面以显着的优势超出了现有的最新方法。结论拟议的Spinet-QSM在高频误差规范(HFEN)和归一化的根平方误差(NRMSE)方面,至少提高了至少5%的持续改善,而与其他QSM重建方法相比,使用有限的训练数据。
由于运动攀岩越来越受欢迎,它被列入 2020 年奥运会比赛项目。此外,过去 30 年,在岩石上而非比赛期间取得的最高攀岩成绩呈渐近式增长 ( Michailov, 2014 )。这两个事实都表明攀岩运动已经达到了发展的高级阶段。这对攀岩者的准备工作提出了更高的要求,需要监测和评估攀岩特定的体能,以优化训练并进一步提高攀岩表现。事实证明,传统使用的锻炼测试对于评估攀岩者的训练状态毫无用处 ( Watts, 2004 )。为了为攀岩者选择合适的锻炼测试,应该熟悉攀岩中的特定负荷特性、表现限制因素和生理方面。攀岩运动种类繁多,持续时间和锻炼强度各不相同。比赛期间,先锋攀登的时间限制为 6 分钟。否则,运动攀登路线(领先)的上升通常需要 1-4 分钟(红点 - 制定路线后)和 3-10 分钟(即兴攀登 - 首次尝试)。抱石攀登通常持续 30-50 秒(Michailov,2014)。在抱石比赛期间,攀岩者可以根据需要多次尝试抱石问题,并且可以在 4 到 5 分钟内完成。之后,他们休息 4 到 5 分钟,然后开始处理下一个抱石问题。男子 15 米速度攀登的实际记录是 5.21 秒。因此,攀登并不等同于永久性最大努力,而是多种肌肉努力模式的混合,由与最大力量相关的收缩强度、收缩阶段的持续时间及其与放松阶段的关系决定。所有攀岩运动的共同点是,它们需要剧烈的间歇性等长肌肉收缩(Sheel,2004)。手指屈肌的收缩时间比其放松时间长得多。收缩与放松的比率会限制血流。在运动攀岩中,该比率可能为 4:1,在抱石运动中,该比率可能为 13:1(Schadle-Schardt,1998;White and Olsen,2010)。攀岩表现的结构包括大量运动能力和技能,包括生理和心理因素、人体测量特征和灵活性(Sheel,2004;Watts,2004;Giles 等,2006;Michailov,2014)。身体变量在很大程度上解释了攀岩表现的差异,这些变量是可训练的因素,例如手指手臂的力量和耐力,而人体测量特征和灵活性的影响相对较小(Mermier 等人,2000 年;Baláš 等人,2012 年;Laffiaye 等人,2016 年)。身体、技术和心理特征以类似的方式解释了攀岩表现的结构,这可以作为攀岩者需要进行和谐发展训练的证据(Magiera 等人,2013 年)。从生理学的角度来看,攀岩是一项有趣的运动,因为它需要:(a)令人满意的有氧能力和一般耐力,以及(b)由有氧、磷酸原[三磷酸腺苷(ATP)和磷酸肌酸(PCr)]和无氧乳酸能量系统提供的特定肌肉力量和耐力(Sheel,2004;Watts,2004;Giles 等人,2006;Bertuzzi 等人,2007)。先前的研究重点是