BES 网络资产的一个特性是实时范围特性。对于应用这些版本 5 CIP 网络安全标准的 BES 网络系统和 BES 网络资产而言,重要的时间范围被定义为对 BES 可靠运行的实时操作至关重要的时间范围。为了提供比“实时”更好的时间范围定义,BES 网络资产是指那些如果不可用、降级或滥用,将在激活或实施入侵后 15 分钟内对 BES 的可靠运行产生不利影响的网络资产。此时间窗口不得考虑冗余 BES 网络资产或 BES 网络系统的激活:从网络安全的角度来看,冗余并不能缓解网络安全漏洞。
与上述流量限制类似,许多工艺冷却作业需要的温度范围超出了冷却器允许的最小和最大操作值。下图 2 显示了混合水管道布置变化的简单示例,该变化可以允许冷却器可靠运行,同时满足此类冷却条件。例如,实验室负载需要 5 l/s 的水以 30°C 进入工艺,并以 35°C 流回。冷却器的最大冷却水出口温度为 15.6°C。在所示的示例中,冷却器和工艺流量相等,但这不是必需的。例如,如果冷却器的流量更高,则只会有更多的水绕过并与返回冷却器的温水混合。
与上述流量限制类似,许多工艺冷却作业需要的温度范围超出了冷却器允许的最小和最大操作值。下图 2 显示了混合水管道布置变化的简单示例,该变化可以允许冷却器可靠运行,同时满足此类冷却条件。例如,实验室负载需要 5 l/s 的水以 30°C 进入工艺,并以 35°C 流回。冷却器的最大冷却水出口温度为 15.6°C。在所示的示例中,冷却器和工艺流量相等,但这不是必需的。例如,如果冷却器的流量更高,则只会有更多的水绕过并与返回冷却器的温水混合。
与上述流量限制类似,许多工艺冷却作业需要的温度范围超出了冷却器允许的最小和最大操作值。下图 2 显示了混合水管道布置变化的简单示例,该变化可以允许冷却器可靠运行,同时满足此类冷却条件。例如,实验室负载需要 5 l/s 的水以 30°C 进入工艺,并以 35°C 流回。冷却器的最大冷却水出口温度为 15.6°C。在所示的示例中,冷却器和工艺流量相等,但这不是必需的。例如,如果冷却器的流量更高,则只会有更多的水绕过并与返回冷却器的温水混合。
BES 网络资产的一个特征是实时范围特征。对于受这些版本 5 CIP 网络安全标准应用的 BES 网络系统和 BES 网络资产而言,重要的时间范围被定义为对 BES 可靠运行的实时操作至关重要的时间范围。为了提供比“实时”更好的时间范围,BES 网络资产是指那些如果不可用、降级或滥用,将在激活或实施入侵后 15 分钟内对 BES 的可靠运行产生不利影响的网络资产。此时间窗口不得考虑冗余 BES 网络资产或 BES 网络系统的激活:从网络安全的角度来看,冗余并不能缓解网络安全漏洞。
政府经常从工程和地缘政治角度看待能源安全。工程学的观点与能源技术的安全和可靠运行有关,主要是通过监管来实现的。尽管这主要集中在核电站等单个工厂上,但由于低碳间歇性可再生能源的渗透率增加,现在考虑到英国,德国和澳大利亚等国家 /地区更广泛的电气三级系统的稳定性。地缘政治观点在历史上主要与资源供应安全性有关,目的是确保英国以稳定的价格获得稳定的化石燃料供应,并在某种程度上促进能源独立性和国内化石燃料储量的发展[17,18]。
值得注意的是,该研究重点关注的是部署储能系统以经济高效地提高输电系统的可靠性和效率,因此可以像传统输电一样通过受监管的费率表收回成本。在某些情况下,随着输电费率的变化,如果储能市场参与不与其设计的应用和服务相冲突,这种储能系统可以成为参与纽约独立系统运营商 (NYISO) 电网和市场运营的大量电力资源。例如,如果一小时持续时间的资产足以支持电网的可靠运行,那么更长持续时间的资产可以提供其他电网服务,包括能源充足性以提高高需求时段的系统弹性、合成惯性、频率调节、电压支持等。
为了提高电力系统的可靠性和弹性并减轻环境问题,引入了微电网 [1]。微电网由分布式能源和存储单元组成,这使得它们可以独立于主电网运行 [2]–[4]。这意味着,如果满足运行约束,微电网能够产生足够的电力来满足其需求 [5]。传统上,电力以交流形式输送。这是因为电力最初是以交流形式产生的,现有的输配电基础设施设计用于交流电。然而,直流电有一些好处,比如损耗更小、可靠性更高,在频率和电压调节方面的技术挑战也更少 [6]。在本文中,混合交流/直流微电网被认为受益于直流电的优势 [7],[8]。交通运输系统正在迅速向电气化转变,电动汽车越来越多地被引入其中。电动汽车的一个特点是其储能能力。如果实施得当,电动汽车还可以向电网注入电力。在我们之前的工作中,我们已经表明,电动汽车车队的储能能力可用于为电网提供多种服务 [9]。车辆到电网 (V2G) 的概念利用了电动汽车电池,并允许插电式电动汽车 (PEV) 用于电力系统运行 [10],[11]。系统运营商可以制定激励计划,鼓励 PEV 车主参与管理计划。此外,研究人员正在研究电动汽车停车场作为储能系统以提供灵活性 [12],[13]。在这项工作中,我们考虑了一个自我延续的零碳微电网,它有足够数量的可再生能源发电,以确保系统的可靠运行。我们考虑的不是大容量储能系统,而是系统各个节点的电动汽车充电站形式的分布式储能。结果表明,通过对电动汽车电池进行适当的管理,它们可以储存足够的能量来满足车主的日常出行需求,并确保在可再生能源发电不足期间微电网的可靠运行。这项工作的贡献可以总结如下:
胡佛大坝是美国智慧和骄傲的标志性象征,为西部城乡社区的公用事业以及重要的工业客户提供可再生水电。大坝常常在能源需求高而资源稀缺的关键时刻提供电力。胡佛大坝是八十多年前建造的水电主力,其老化的厂房和设备需要更换才能保持电厂可靠运行。根据合同,大坝服务的水电客户有义务支付胡佛大坝的维护、维修和更换费用。由于气候变化和干旱,这些客户在看到成本增加的同时,也看到了水力发电量的减少。胡佛大坝的水电客户正在寻求解决方案来帮助缓解成本上涨,而 HR 7776 就是其中一种解决方案。
在低功耗边缘设备上运行的神经网络有助于在有限的基础设施下实现普适计算。当此类边缘设备部署在没有必要防护的传统和极端环境中时,它们必须具有容错能力才能可靠运行。作为一项试点研究,我们专注于将容错功能嵌入神经网络,提出一种新颖的选择性乘法累积零优化技术,该技术基于提供给神经网络神经元的输入值是否为零。如果值为零,则绕过相应的乘法累积运算。我们对优化技术的实施进行了使用 ∼ 14 MeV 中子的辐射测试活动,发现提出的优化技术将测试神经网络的容错能力提高了 1.78 倍。