生物分子需要一个水环境来维持其结构完整性,并积极参与接近蛋白质或核酸的水分子,而蛋白质或核酸的流动性少于散装溶剂中的水分子。水分子在稳定和与核酸结构相互作用中的作用是长期的[1-11]。水分子用于屏蔽电荷中心,例如磷酸盐,以在DNA和配体之间桥接(小分子和蛋白质),并且重要的是维持DNA的结构和构象完整性。关于DNA纤维水合的开创性研究[12]首先证明了水合在维持双螺旋DNA的结构完整性方面的重要性,以及水合在确定其多态性方面的作用,其中最值得注意的多晶型是右手的A-和B形式[13,14]。然而,这些研究无法定义相关水分子的位置,尽管据推测它们与双螺旋外部的磷酸基团相关[12]。对核碱基的早期单晶研究表明,存在直接基氢键接触[15]。随后的单晶[16-19]和NMR [20]对定义的序列寡核苷酸及其药物复合物的分析揭示了结构化水分子簇的作用,确立了第一和第二壳水的重要性。[17 - 28])。小凹槽水合还可以在识别小分子凹槽结合配体的识别中发挥积极作用,而水之间的水在配体和碱原子之间桥接[29 - 33]。“水合的脊柱”是一系列相对固定的水分子[16] [16],存在于富裕的B-DNA的小凹槽中,也许是最著名的水基序,并通过高分辨率晶体学研究以及NMR,NMR,模拟和生物物理分析的验证(例如,请参见RefS。已经观察到在较大体积的空间中,例如在DNA宽凹槽或互化的药物-DNA界面中,已经观察到存在于大体积的空间中(例如,参考文献[34,35])。DNA和RNA也可以形成三链结构,给定适当的序列[36]。后者称为G-四链体(G4)核酸,为高电流
有几种动机将重力理论扩展到爱因斯坦的一般相对论(GR)之外。所有试图用量子物理学调和该理论的所有尝试都以额外的场,高阶运动方程或高阶曲率不变性的形式引入偏差。例如,以骨弦理论的低能限制(在字符串理论中最简单)产生ω= - 1 brans-dicke理论而不是gr,这是标量张量理论的原型(并且ω是brans-dicke coupling)[1,2]。但是,研究重力理论的最引人注目的动机来自宇宙学。例如,数据最受数据偏爱的通用模型,即starobinsky inftion,包括对GR的量子校正。最重要的是,在基于GR的标准λCDM模型的领域中,缺乏对当今宇宙加速扩张的令人满意的理解:它要求人们引入一种惊人的宇宙学常数或另一种形式的Ad Hoc Dark Energy,其本质仍然难以置信[3]。在任何情况下,即使承认黑暗能量的存在仍然留下λCDM的其他问题,例如哈勃张力[4,5],对同样神秘的暗物质的要求以及困扰着宇宙学和黑洞物理学的奇异性问题。因此,研究重力理论以解决或减轻这些问题是合理的。修改GR的最简单方法是添加标量(巨大的)自由度,这导致了Bransdicke Gravity [6]及其标量张紧概括[7-10]。f(r)重力理论被证明是标量调整理论的子类,非常受欢迎,可以解释当前的宇宙加速度而没有暗能量([11],有关评论,请参见[12-14])。在过去的十年中,旧的Horndeski Gravity [15]进行了重新审视和研究(有关审查,请参见[16])。这类理论被认为是二阶运动方程式的最通用的标量张力重力,但随后发现,如果满足适当的退化条件,则更一般性的更一般的变性高阶标量表(DHOST)理论允许第二阶段的二阶方程(请参阅[17])。Horndeski和Dhost理论在其行为中包含任意功能,这使得方程非常繁琐,并且很难进行研究。多人事件GW170817/grb170817,[18,19]证实了以光速传播的引力波模式基本上排除了Horndeski理论,其具有最复杂的结构[20] [20] [20],但许多可能性(对应于动作中的四个免费)。因此,很难掌握这些理论及其解决方案的详细物理含义,许多工作必定仍与形式的理论方面相关,并寻求分析解决方案。当该理论的标量场的自由度φ的梯度是时代的[21-23]时,这种有效的流体描述是可能的。武装这些概念,可以将GR描述为重力的热平衡状态试图获得标量调节引力的物理直觉(包括可行的Horndeski理论),可以通过有效的脉动描述来解释它是富有成效的,其中(Jordan框架)方程将作为有效的EINSTEIN方程式和右手置于右手,以右手的方式写入,并以右侧的方式写入。耗散液[21 - 24]。在这种情况下,使用ECKART在耗散流体的第一阶热力学[25]中提出的三个本构关系[25],我们能够引入有效的“重力温度”,以及剪切和散装粘度粘度系数[24,26,27]。