许多生物现象的数学模型,例如疾病的传播,都是基于相互作用的细胞群密度的反应扩散方程。我们从适当重新缩放的动力学玻尔兹曼方程系统,一致地推导出反应扩散方程,用于在宿主介质中相互作用的细胞群的分布函数。我们首先表明,动力学方程的经典扩散极限只会导致线性扩散项。然后,我们展示了可能的策略,以便从动力学层面获得具有非线性扩散和交叉扩散效应的宏观系统。从动力学描述中推导的优点是将反应和扩散系数与相互作用的微观参数联系起来。我们介绍了我们的方法在研究叶子表面不同细菌种群进化中的应用。通过分析方法和数值工具研究了相关宏观系统的图灵不稳定性特性,特别强调了二维空间域中不同参数的模式形成。
当将药剂集中在根部活跃区域或叶片表面时,可获得最佳效果。• 可与兼容的植物生长调节剂、杀虫剂或其他液体肥料结合使用。• 如果兼容性存在疑问,请对少量药剂进行罐装测试。• 叶面喷雾时要加足量的水,以确保均匀覆盖,不会从叶片表面流出。• 请勿以超过 5% 的浓度将本产品用于叶面。• 为获得最佳效果,请在清晨或傍晚气温最适合叶面施用时使用。• 请勿在一天中最热的时间或干旱或洪水胁迫下的植物上使用 HUMA GRO ®* TURF 营养素。•
对农业实验站田间采集的3,203幅病害数据图像进行了诊断,准确率较高,为79~99%,但对于导致叶片表面出现褐变症状的白粉病,由于数据量较少,准确率较低,仅为25%(表2)。对2,275张虫害图像数据进行了诊断。结果显示,蓟马(果实)、蚜虫(果实)、粉虱(叶背)在图像中拍摄到健康区域时诊断结果为健康的可能性较大,准确率较低。但其他虫害的准确率较高,在81%~100%之间(表3)。现场诊断结果与农业实验站现场诊断结果的准确率相似(未显示数据)。当检查使用智能手机诊断应用程序在现场拍摄的 632 张病害照片和 179 张虫害照片时,准确率大致相同(表 4,图 1)。对于推广讲师对诊断应用程序的可用性,应用程序的评价普遍良好,具有操作流程简单易懂、图标大且易于使用等特点。
在欧洲旋翼机空气动力学和声学 (HELISHAPE) 大型合作研究计划的框架内,在 DNW 的开放测试部分进行了参数模型旋翼测试,使用 DLR 的 MWM 测试台和配备先进设计的叶片和两个可更换叶尖的全铰接式 ECF 旋翼的高度仪器化模型。一组叶尖 (7A) 为矩形,另一组 (7ADI) 为后掠抛物线/上反角形状。这项实验研究的目的是评估降噪技术(概念上通过改变旋翼速度、专用叶尖形状和先进的翼型,以及操作上通过确定低噪音 - BVI 最小化下降程序)并验证合作伙伴的空气动力学和声学代码。同时测量了叶片表面声学和气动压力数据以及叶片动力学和性能数据。此外,通过 LLS 流动可视化获得了有关尖端涡流几何形状和叶片涡流错开距离的宝贵信息。简要描述了实验设备、测试程序和测试矩阵。介绍了主要结果,并讨论了两个转子最重要的参数变化趋势。
1.1 复合直升机的示例.......................................................................................................................................................3 1.2 倾转旋翼飞机的示例.......................................................................................................................................................3 1.3 前飞对后飞桨叶速度的影响.......................................................................................................................4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后飞桨叶升力来平衡旋翼力矩的需要,可以缓解后飞桨叶失速,就像单旋翼飞行器一样(左图)[5]。................................................................ ..................................................................................................................................................................................4 1.5 兰利全尺寸风洞中的 PCA-2 转子试验装置 [11]。...9 1.6 采用悬臂转子配置的 Meyer 和 Falabella 风洞试验装置 [12]。......................................................................................................................................................................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾音器 [12]。 12 1.9 1965 年詹金斯在兰利全尺寸风洞中的试验装置 [13]。 14 1.10 高进速比时转子推力和 H 力系数与总距(A0)的关系,显示总距推力反转 [13]。 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 1.13 在增加前进比的情况下,在盘面载荷恒定的情况下测得的有效旋翼升阻比 [16]。 . . . . . . . . . . . . . 21 1.14 升力对总距比和前进比的敏感度变化 [16]。 . . . . . 22 1.15 在 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中监测 UH-60A 空气载荷旋翼 [17]。 . . . . . . . . . . . . . . 24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。 . ...
1.CACTI和生物多样性仙人掌是生物多样性的宝贵指标,强调了其本地栖息地中存在的多种生命形式和生态相互作用。研究仙人掌及其生态系统提供了对生物多样性的复杂动态的见解,以及保护这些独特而有价值的植物物种的重要性。适应恶劣的环境:仙人掌以其在极端条件(例如干旱沙漠)中生存的能力而闻名。它们的独特适应性,包括储物组织,减少叶片表面以最大程度地减少水分流失,以及保护食草动物的棘突,显示出植物已经发展为在挑战性的环境中发展为蓬勃发展的策略的显着多样性。物种多样性:仙人掌表现出广泛的物种多样性,属于仙人掌科家族的1,500多种已知物种。这种多样性包括各种大小,形状和生长习惯,从微小的球状仙人掌到高耸的柱状物种。每个物种都演变为占据特定的生态壁ches,这有助于其栖息地的整体生物多样性。栖息地多样性:仙人掌在美洲的各种栖息地中发现,从干旱的沙漠到热带雨林。它们在这种不同的环境中的存在突出了这些地区的生物多样性及其适应不同生态条件的能力。授粉与互助:仙人掌与蜜蜂,鸟类,蝙蝠和昆虫等传粉媒介进行了迷人的相互作用,这有助于其生态系统的生物多样性。许多仙人掌物种与特定的传粉媒介共同发展,形成了互助关系,从而使植物和传粉媒介受益。文化和经济重要性:仙人掌对人类社会具有重要的文化和经济意义。土著社区长期以来一直将仙人掌用于食品,医学和宗教仪式,强调了它们在传统知识系统中的重要性。此外,某些仙人掌物种,例如刺梨仙人掌(Opuntia),是为其可食用的水果而种植的,而另一些仙人掌物种则被视为花园和景观中的观赏植物。
1.1 复合直升机示例。........................3 1.2 倾转旋翼飞机示例。。。。。。。。。。。。。。。。。。。。。。。。。3 1.3 前飞对后退叶片速度的影响。.........4 1.4 同轴反向旋转旋翼能够在前飞期间保持每个旋翼的升力不对称,每个旋翼的力矩相互抵消。通过消除后退叶片升力来平衡旋翼力矩的需要,可以缓解后退叶片失速,就像在单旋翼飞行器中一样(左图)[5]。..。。。。。。。。。。。。。。。。。。。。。。。。..4 1.5 兰利全尺寸风洞中的 PCA-2 转子测试装置 [11]。.9 1.6 带有悬臂转子配置的 Meyer 和 Falabella 风洞测试装置 [12]。.............................10 1.7 叶片表面压力端口的展向和弦向位置 [12]。11 1.8 零铰链偏移转子的轮毂组件,显示来自叶片的压力管连接到轮毂内的压力拾取器 [12]。.12 1.9 1965 年詹金斯在兰利全尺寸风洞中的测试装置 [13]。.14 1.10 高前进比时转子推力和 H 力系数与总距 (A0) 的关系,显示总距推力反转 [13]。..........15 1.11 反向速度转子风洞模型中使用的“可逆”翼型截面轮廓 [16]。.........................18 1.12 为反向速度转子风洞模型开发的每转两个斜盘 [16]。.。。。。。。。。。。。。。。。。。。。。。。。。...19 1.13 在恒定盘面载荷下测量的有效转子升阻比,以提高前进比 [16]。.......................21 1.14 升力对总距比与前进比的敏感度变化 [16]。....22 1.15 位于 NASA 艾姆斯研究中心 40 x 80 英尺 NFAC 风洞中的仪表化 UH-60A 空气负载旋翼 [17]。...。。。。。。。。。。。。。。。。。。。。。。24 1.16 压力传感器在仪表旋翼叶片上的分布 [17] 24 1.17 UH-60A 减速旋翼风洞试验中明显的集体推力反向趋势 [18]。...................................26 1.18 不同推进比下的升阻比与升力零和正 4 度轴,40% NR [18]。。。。。。。。。。。。。。。。。。。。。。。27