支付系统以及总体而言所有 ICT 基础设施的安全都严重依赖于加密系统。欧洲央行 1 针对所有管理的结算系统所采用的业务连续性模型,是基于跨多个数据中心的数据复制,其完整性和机密性(即传输中的数据)由适当的加密系统保证。加密可以保护同一数据中心内处理系统之间的通信,存储在各个系统中的敏感数据也会被加密。这些保护措施是通过利用市场上最好的加密系统来实现的。当前使用的加密方案基于两个构建块:生成具有最大熵的随机位序列(Wang、Pan 和 Wu 2019)和存在难以解决的数学问题,2 例如素数分解 3 和离散对数问题。 4 这些是所有身份验证、授权、数字签名和加密密钥分发系统的基础。量子计算的发展是上个世纪重大科学革命之一;然而几十年来,对量子系统进行控制的能力一直受到限制,从而限制了可以设想的技术应用类型。近年来,一些意想不到的事情发生了(Dowling and Milburn 2003),使得量子系统的控制取得了长足的进步;由于兴趣和投资的增加以及科学突破,在不久的将来取得进一步的进展似乎非常有可能。此外,全球许多国家都启动了国家量子技术计划(Wallden and Kashefi 2019)。1982 年,物理学家理查德费曼根据量子物理定律提出了构建计算机的可能性(Feynman 1982);然而,只有得益于最近的技术和工程发展,才有可能建造出真正的量子计算机,而且事实证明,在某些领域和应用上,量子计算机比传统计算机要更好(Google 2018)。此外,专为在量子计算机上运行而设计的特殊算法(Shor 1994)(Grover 1996)即将利用量子计算并攻击仍然基于计算复杂性的当前加密方案。根据美国国家标准与技术研究所 (NIST) 5(L. Chen 等人 2016),基于非对称密钥的主要加密算法容易受到基于量子计算的攻击。特别是,最近的一项研究表明,使用 2000 万个嘈杂的量子比特(Gidney 和 Ekerå 2021),可以在大约 8 小时内导出 2048 位 RSA 6 密钥的素因数。如果从恶意用户的角度来看,量子技术可以被视为一种
用于观测近地空间的新型双管望远镜 OM Kozhukhov 国家空间设施控制和测试中心,乌克兰基辅 OB Bryukhovetsky、DM Kozhukhov、VI Prysiaznyi、AP Ozerian、OM Iluchok、VM Mamarev、OM Piskun 国家空间设施控制和测试中心,乌克兰基辅 摘要 2021 年底,乌克兰国家航天局在外喀尔巴阡地区安装了一台新望远镜,以观察近地空间物体,以满足乌克兰空间监测与分析系统的利益。该望远镜由两个管子(0.35 m、f/2.0 和 0.25 m、f/12.0)组成,安装在一个带直接驱动的赤道仪上,并配备 CMOS 摄像机。望远镜和摄像机由原始软件控制。我们将介绍该望远镜的设计和各个系统,以及使用它观测不同轨道的近地空间物体的初步结果。1.引言光学传感器是空间态势感知(SSA)的重要信息来源。它们可以高度精确地估计近地驻留空间物体(RSO)的角坐标和视亮度,从而优化它们的轨道并确定它们的状态。它们可以观测从低地球轨道(LEO)到地球静止轨道(GEO)及更远的所有可能轨道上的RSO。光学观测对于中轨道(高度20,000 km)和高轨道(GEO及以上)的物体尤其重要,因为这些轨道上难以使用雷达。尽管光学传感器有诸多优点,但也存在严重的局限性。它们大多数只能在夜间工作,而且与雷达不同,它们严重依赖天气(多云)。此外,大多数光学传感器在观测低地球轨道物体时吞吐量相对较低[1]。部分抵挡后两个限制的方法是制造新的传感器。同时,光学传感器面临的各种任务通常需要不同的工具才能最有效地发挥作用。这个问题可以通过在同一支架上组合不同类型的镜头来解决,如下所述。还应该注意的是,在不同的国家[2]-[4]已经在一个支架上安装两个相同和不同的镜头很长时间了。2.望远镜规格望远镜是位于乌克兰西部扎喀尔巴阡地区(图1)的光电光电观测站3型(OEOS-3)的一部分。喀尔巴阡山脉将它与该国其他地区隔开,因此这里的气候条件与乌克兰其他地区有显著不同。它使我们假设,当乌克兰其他地区多云时,该地区的传感器可能具有良好的观测条件,反之亦然。 OEOS-3望远镜由安装在同一赤道仪上的两个镜头组成(图2):一个宽视场(WFoV)汉密尔顿镜头和一个窄视场(NFoV)马克苏托夫镜头。两款镜头均配备 QHY-174M GPS CMOS 相机(图 3)。它们以相对较低的价格提供准确的观测时间。这对于 LEO 观测尤其重要。该支架配备直接驱动器。该驱动器提供 20 度/秒的最大旋转速率,并跟踪近地轨道上的任何 RSO。望远镜的特性如表 1 所示。