开发用于涂层和结构部件的新型高温材料是提高燃气涡轮发动机等设备的效率和可持续性的重要课题。NiAl 基合金是一种很有前途的新型高温材料。在本研究中,研究了具有不同 Cr 和 Ta 含量的 NiAl-Ta-Cr 合金的微观结构和显微硬度。通过基于激光的定向能量沉积利用原位合金化方法通过混合元素 Ta 和 Cr 以及预合金 NiAl 粉末制造了分级样品。进行了热力学计算以预先设计合金成分。采用基材的感应预热来应对因高脆性而导致的开裂问题。结果表明,开裂随预热温度的升高而减少。然而,即使在 700 ◦ C 时,开裂也无法完全消除。扫描电子显微镜、X 射线衍射和电子背散射衍射表明,在 NiAl-Ta 和 NiAl-Cr 合金中形成了 B2-NiAl、A2-Cr 和 C14-NiAlTa 相。对于 NiAl-Ta-Cr 成分,观察到计算和实验之间相形成的偏差。在 NiAl-Ta 和 NiAl-Ta-Cr 系统中,共晶成分在 14 at.-% Ta 时可获得最大硬度值,最大值高于 900 HV0.1。
摘要:锌及其合金因具有增强的生物相容性而被视为制备可生物降解医疗器械(支架和骨固定螺钉)的有前途的材料。这些材料必须实现机械性能和腐蚀性能的理想组合,而合金化或热机械过程可能会影响这些性能。本文介绍了不同机械合金化 (MA) 参数对 Zn-1Mg 粉末成分的影响。同时,本研究描述了 MA 制备对 Zn-6Mg 和 Zn-16Mg 合金的影响。采用放电等离子烧结 (SPS) 法压实选定的粉末。随后,研究了它们的微观结构并测试了它们的力学性能。整个过程导致晶粒显着细化(Zn-1Mg 为 629 ± 274 nm)并形成新的金属间相(Mg 2 Zn 11 、MgZn 2 )。烧结样品的压缩性能主要与合金元素的浓度有关,浓度增加导致强度提高但延展性变差。根据所得结果,Zn-1Mg合金的性能最好。
高强度铝合金,包括 2xxx、6xxx 和 7xxx 合金,在高温下强度较低,这是因为热暴露后沉淀物会粗化[7 和 9]。最近的研究报告称,由于 α-Al(MnFe)Si 弥散体的析出,3xxx 合金在室温和高温下均具有优异的力学性能[10 和 13]。α-Al(MnFe)Si 弥散体与基体部分共格,具有立方晶体结构[10,14]。有趣的是,α-Al(MnFe)Si 弥散体在 300℃ 时具有热稳定性,这提高了高温强度和抗蠕变性[12,13]。曾尝试通过添加合金元素和/或各种热处理来优化α-Al(MnFe)Si弥散体的特性,以期改善3xxx合金的高温力学性能[11、13、15和19]。刘和陈[12]报道,在375℃下加热48小时的一步法热处理促使大量α-Al(MnFe)Si弥散体析出,从而在300℃下实现3004合金的峰值弥散强化。后来,发现与在375℃下加热48小时的一步法热处理相比,在250℃下加热24小时和在375℃下加热48小时的两步法热处理可显著改善弥散体的特性以及300℃下的屈服强度和抗蠕变性[17]。李等人。 [13]研究了添加不同量的Si和Mg对3xxx合金组织和高温性能的影响,发现当Si含量为0.25wt.%、Mg含量为1.0wt.%时,α-Al(MnFe)Si弥散相的高温强化效果最好。刘等[16]研究发现,在Al-Mn-Mg 3004合金中添加0.3wt.%Mo可细化弥散相,并提高其在350℃以下的热稳定性。由于Fe、Si和Mn等合金元素在凝固过程中发生偏析,在沉淀热处理过程中,枝晶间区域总会形成无弥散相区(DFZ),从而降低弥散相的体积分数,降低合金的高温性能[11e13]。因此,在采用弥散强化时,必须尽量减少 DFZ。添加具有负偏析(ko > 1)的元素是减少 DFZ 数量的有效方法。据报道,Mo 可以最大限度地减少不同 Al 合金中 DFZ 的形成 [16,20,21],从而使弥散体的体积分数较大且分布均匀,最终获得更优的高温性能。尽管之前的研究报告显示弥散体强化可以使 Ale Mne Mg 3xxx 合金的高温性能得到显著改善,但大多数研究都局限于铸锭。事实上,工业工程零件通常需要材料经历大的塑性变形才能满足特殊的形状和性能要求。此外,热轧或挤压也能消除铸造缺陷,如夹渣、孔隙等,进一步改善材料性能[22e25]。张等[26]研究发现,室温预轧显著促进了纳米弥散相的形核,增加了Al-Mn-Si合金中弥散相的数量密度。但室温变形会增加开裂的风险,从而增加制造难度[27]。因此,有必要研究热变形工艺对弥散相组织及其相关力学性能的影响。
本课程论述了金属微观结构与性能之间的关系。课程包含 15 章。1 介绍性讲座。微观结构控制性能的方法。1 合金元素对钢结构和性能的影响。1 一般建筑用途的钢。合金化策略、强化机制、热处理、微观结构、性能。2 工具钢。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。3 轴承钢、弹簧钢和钢丝。要求。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。4 马氏体时效钢。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。5 成形性优良的钢。深冲质量和 (DDQ) 钢和 1 EDDQ 钢,ELC 和 IF 路线之间的加工差异,纹理和 1 沉淀控制,使用性能。6 轨道钢 – 要求。合金化策略、强化机制、热处理、微观结构、性能、应用、缺陷。案例研究-
摘要 不锈钢、钛合金、钴铬合金等金属材料是应用最为广泛的骨科植入物,但在临床应用中仍存在金属与骨的力学不匹配、炎症、二次手术等问题。镁及其合金作为新一代医用金属材料,由于其优异的生物降解性而备受关注。可生物降解的镁基金属具有良好的力学性能和成骨性能,有望成为治疗棘手骨科疾病的植入材料。但腐蚀速度快仍是制约其临床应用的主要挑战之一,合金化和表面改性是控制镁合金腐蚀速度的有效方法。本文综述了可生物降解镁合金的力学性能、生物性能及其在临床应用中存在的问题,重点介绍了镁基金属在合金化和表面改性方面的最新进展,并介绍了镁基植入物在骨科的应用现状。
事实证明,最大化能带简并度和最小化声子弛豫时间对于推进热电学是成功的。与单碲化物合金化已被公认为是收敛 PbTe 价带以改善电子性能的有效方法,同时材料的晶格热导率仍有进一步降低的空间。最近有研究表明,声子色散的加宽衡量了声子散射的强度,而晶格位错是通过晶格应变波动实现这种加宽的特别有效的来源。在本研究中,通过精细控制 MnTe 和 EuTe 合金化,由于涉及多个传输带,PbTe 价带边缘附近的电子态密度显著增加,而密集的晶内位错的产生导致声子色散有效加宽,从而缩短声子寿命,这是由于位错的应变波动较大,这已由同步加速器 X 射线衍射证实。电子和热改进的协同作用成功地使平均热电性能系数高于工作温度下 p 型 PbTe 的报道值。
国际期刊:1. A. Sahu、RS Maurya、LK Singh、T. Laha,分析铣削和烧结参数对 Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 非晶带晶相演变和力学性能的影响,https://doi.org/10.1007/s40195-021-01341-y。2. A. Sahu、RS Maurya、S. Dinda、T. Laha,Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 放电等离子烧结块体非晶复合材料的相演变相关纳米力学性能,冶金和材料学报 A 51A (2020) 5110-5119。 3. RS Maurya、A. Sahu、T. Laha,通过机械合金化和放电等离子烧结合成的 Al 86 Ni 8 Y 6 非玻璃合金的纳米压痕研究,国际材料研究杂志 111 (2020) 1-8。4. A. Sahu、RS Maurya、T. Laha,通过放电等离子烧结固结的 Al 86 Ni 8 Y 6 和 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 熔纺薄带、研磨薄带颗粒和块体样品的非等温结晶行为,ThermochimicaActa 684 (2020) 1-11。 5. A. Sahu 、RS Maurya、T. Laha,Al 86 Ni 6 Y 4.5 Co 2 La 1.5 机械合金化非晶粉末与熔体快速淬薄带烧结行为的比较研究,先进粉末技术 30 (2019) 691-699。6. A. Sahu 、RS Maurya、T. Laha,烧结温度对机械合金化和放电等离子烧结制备的 Al 86 Ni 6 Y 4.5 Co 2 La 1.5 块体非晶复合材料相演变的影响,自然科学进展:材料国际 29 (2019) 32-40。 7. T. Thomas, C. Zhang, A. Sahu , P. Nautiyal, A. Loganathana, T. Laha, B. Boesl, A. Agarwal, 石墨烯增强对放电等离子烧结制备的 Ti 2 AlC 陶瓷力学性能的影响, 材料科学与工程 A 728 (2018) 45-53。8. A. Loganathan, A. Sahu , C. Rudolf, C. Zhang, S. Rengifo, T. Laha, B. Boesla, A. Agarwal, 冷喷涂 Ti 2 AlC MAX 相涂层的多尺度摩擦学和纳米力学行为, 表面与涂层技术 334 (2018) 384-393。 9. RS Maurya, A. Sahu , T. Laha, 烧结温度对机械合金化 Al 86 Ni 6 Y 6 Co 2 非晶态粉末放电等离子烧结固结过程中相变的影响, 非晶态固体杂志 453 (2016) 1-7。10. RS Maurya, A. Sahu , T. Laha, 机械合金化和连续放电等离子烧结在不同固结压力下合成的铝基块体金属玻璃的微观结构和相分析, 先进材料快报 7 (2016) 187-191。11. RS Maurya, A. Sahu , T. Laha, 通过放电等离子烧结固结机械合金化非晶态粉末合成的 Al 86 Ni 8 Y 6 块体非晶态合金的定量相分析, 材料与设计 93 (2016) 96-103。 12. RS Maurya,A. Sahu,T. Laha,固结压力对机械合金化 Al 86 Ni 8 Y 6 非晶态粉末放电等离子烧结过程中相演变的影响,材料科学与工程 A 649 (2016) 48-56。国际会议:1. A. Sahu,A. Behera,Al-Cu 合金的半固态加工和摩擦学特性,Materials Today:Proceedings 2 (2015) 1175-1182。2. A. Behera、S. Aich、a. Behera、A. Sahu,磁控溅射 Ni/Ti 薄膜的加工和特性及其退火行为以诱导形状记忆效应,Materials today:proceedings 2 (2015) 1183-1192。
混合元素粉末是金属增材制造中预合金粉末的一种新兴替代品,因为用它们可以生产的合金范围更广,而且由于不开发新原料而节省了成本。在本研究中,通过在 BE Ti-185 粉末上进行 SLM,同时通过红外成像跟踪表面温度并通过同步加速器 X 射线衍射跟踪相变,研究了 SLM 过程中的原位合金化和同时发生的微观结构演变。然后,我们进行了事后电子显微镜检查(背散射电子成像、能量色散 X 射线光谱和电子背散射衍射),以进一步了解微观结构的发展。我们表明,虽然放热混合有助于熔化过程,但激光熔化只会产生合金区域和未混合区域的混合。只有通过在热影响区进一步热循环才能实现完全合金化,从而获得一致的微观结构。 2021 作者。由 Elsevier Ltd. 出版。这是一篇根据 CC BY 许可协议 ( http://creativecommons.org/licenses/by/4.0/ ) 开放获取的文章。