2.4 n/cm 2。已通过辐照后拉伸试验测量了 700 C 下的总伸长率(讨论表 1),应变率为 5X10 -a rain -1。表格分析表明,在 1.2 和 1.9X1021 n/em ~ 的快速通量之间,总伸长率下降趋于平稳,E>0.1 MeV,在大于 10 '~ n/em" 的快速通量下辐照的样品的拉伸试验正在进行中,并将检查此水平。
行业的一个重要目标是减少碳足迹 [5]。节约能源的一种方法是用亚麻等天然纤维代替玻璃纤维 [6]。此外,亚麻能够提高层压板的阻尼性能,这一点众所周知,而且对于提高损伤容限可能很有吸引力 [7]。将纤维添加到聚合物中可以提高拉伸性能,使用偶联剂后拉伸性能会提高更多 [8]。与其他天然纤维和合成纤维相比,亚麻纤维具有特定的强度和特定的刚度。亚麻纤维具有多种特性,但也存在一些缺点 [9]。这些缺点是纤维是亲水性的,文献中观察到复合材料受湿度和温度等环境变化的影响很大,这会导致纤维增强复合材料的机械性能下降,这是由于纤维膨胀和基质老化造成的 [10]。纤维中的水分吸收遵循菲克扩散定律(扩散
在本研究中,采用高通量 (HT) 方法来快速评估 83 种增材制造的 316L 不锈钢的表面特性。表面粗糙度 (S a) 的变化与无量纲数 (π) 呈现出良好的相关性,并与内部孔隙缺陷直接相关。未熔合状态与高表面粗糙度 (S a > 5 μm)、低无量纲数 (π < 61) 以及熔池轨道之间存在空洞有关。球化状态与高表面粗糙度 (S a > 5 μm)、中等无量纲数 (61 < π < 146) 和不均匀的熔池轨道宽度相关。锁孔状态表现出低表面粗糙度 (S a < 5 μm)、高无量纲数 (π > 146) 和弯曲的熔池轨道。这种方法加速了工艺参数的发现,并最大限度地减少了 LPBF 工艺的孔隙缺陷。缺陷对加工后拉伸力学性能的影响表明,具有孔隙度的样品的拉伸强度比最佳样品低 10%,延展性低 30%。
采用多种高性能纤维织物制造轻量化、高强度的复合材料是织物的发展趋势,本文基于复合材料结构性能一体化设计原理,以高强度高模量的芳纶纤维和低密度高韧性的PBO纤维作为增强材料,以碳纤维材料作为改性材料,采用RTM成型工艺制备了多种层合结构的CF-ANF-PBO超混杂三维复合材料,根据ANF/PBO体积分数设计了不同混杂结构的织物复合材料,并研究了不同混杂结构复合材料的力学性能。结果表明:当ANF/PBO体积分数达到100%时,未改性条件下复合材料的拉伸模量和强度最大,分别为68.81 GPa和543.02 MPa,而加入碳纤维改性后拉伸模量和强度分别为73.52 GPa和636.82 MPa,拉伸模量和拉伸强度性能总体改善分别为6.8%和17.27%,可以看出碳纤维的加入明显改善了芳纶和PBO纤维复合材料的性能。