翼展(整体)................................................................................................................................................................37 英尺 10 英寸(11.53 米) 面积......................................................................................................................................................................199.2 平方英尺(18.51 平方米) 二面角......................................................................................................................................................................................... 6.0 度 后掠角(25% 弦长)......................................................................................................................................................................... 0.0 度
身体数据框 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14 顶部/底部突出部. . . . . . . . . . . . . . . . 16 前部/后部突出部. . . . . . . . . . . . . . . . . . 18 平滑机身. . . . . . . . . . . . . . . . . . . . . . 19 向机身添加其他机体. . . . . . . . . . . . . 19 3.3 塑造机翼. . . . . . . . . . . . . . . . . . . 20 设置基本特征. . . . . . . . . . . . . . . . . . 20 添加副翼、襟翼和其他控制面 . . . . . . . . . . . . . . . . . . . 21 指定副翼、升降舵和其他表面 . . . . . . . . . . . . . . . . . . 22 指定襟翼和前缘缝翼 . . . . . . . . . . . . . . . . . . . . . . 23 为机翼添加控制面 . . . . . . . . . . . . . . . . . . . . 25 添加机身上的减速板 . . . . . . . . . . . . . 27 自定义机翼部件(用于入射角、尺寸和位置) . . . . . . . . . 29 设置机翼的翼型 . . . . . . . . . . . . . . . . . . 30 使机翼可移动 . . . . . . . . . . . . . . . . . 31 设置可变机翼后掠角 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 添加发动机吊架 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .43 3.7 设置牵引钩、绞盘钩、登机门和加油口的位置....................................................................................................................................................................45
描述 在本课程中,学员将了解空气动力学如何推动运输飞机的详细外观设计。哪些空气动力学现象在机翼、驾驶舱或发动机进气口的外观设计中发挥作用?涡流发生器、整流罩或翼梢小翼等空气动力学附加装置的作用是什么?机翼后掠角的优点和缺点是什么,机翼的空气动力学设计如何减轻这些缺点?这些是本课程要解决的一些问题。学员将了解如何塑造各种飞机部件以满足飞行包线各个角落的空气动力学要求。通过大量历史和当代案例展示了飞机性能、飞机空气动力学和飞机外观设计之间的紧密联系。虽然主要关注的是喷气式飞机,但本课程还涵盖了螺旋桨安装对尾翼空气动力学设计的影响。
由于隐形技术和现代导弹的发展,未来空战的空战战术将发生重大变化。快速目视交战可以通过高攻角和跨音速下的快速瞬时机动来决定,而射击优势则通过快速导弹交换来确定。在更高的跨音速下,必须掌握受控涡流,以便控制所有三个轴的运动。飞机的平面形状、机翼后掠角和前缘类型必须在整个飞行包线内为这些复杂流动提供共同利益,同时还要考虑特征。通常在侧滑条件下会达到受控飞行极限。在这里,不对称涡流不稳定性会导致不稳定的滚动力矩和不利的偏航。为了突破这些极限,必须深入了解涡流分离、它们的相互作用和分解。设计气动特性的探测需要借助现代流动模拟工具,并在适当的物理理解的基础上进行验证。
注 1:本表中的湍流类别是根据翼展、翼面积、纵横比、锥度比、机翼后掠角等飞机因素得出的。因此,应将本表视为权威;但是,飞机的重量、空速和/或高度可能会改变其湍流类别,使其与本表中的默认值不同。原始源文件为 AFWAL-TR-81 3058。如需更新和飞机补充,请联系 AFLCMC/XZIG,DSN 785- 2299/2310。注 2:如果未列出飞机,可以进行以下保守湍流类别划分:在 FL180 或以上飞行的喷气式飞机和多引擎螺旋桨/涡轮螺旋桨飞机可视为 II 类。所有其他飞机都应视为 I 类。注 3:直升机的湍流类别主要根据机组人员的反馈确定。由于直升机的复杂性增加,固定翼飞机所用的方法不适用于直升机。注 4:CV-22 显示的飞行方面包括旋翼机翼操作,因此无法对旋翼飞行阶段(例如起飞/降落)进行客观阵风载荷计算和湍流分类。
摘要。已经开发了两种分析颤振解决方案方法来优化二维和三维飞机机翼结构,其设计标准基于气动弹性不稳定性。第一种方法使用二维机翼模型的开环结构动力学和稳定性分析,以获得优化过程的颤振、发散和控制反转的临界速度。第二种方法涉及使用假定模态技术的三维机翼结构颤振解决方案,并有效地应用于基于颤振标准的气动弹性优化。该颤振解决方案采用能量方程和 Theodorsen 函数来计算气动载荷,并且在设计变量方面是完全参数化的,这些设计变量是锥度比、后掠角、弹性和剪切模量。由于颤振解决方案需要弯曲和扭转固有频率,因此还分析了飞机机翼的自由振动分析。 AGARD 445.6 机翼模型在马赫数为 0.9011 时的颤振解分析结果与文献中的实验结果相符。接下来,将三维颤振代码与优化框架相结合,对 AGARD 445.6 进行基于颤振的优化,以最大化颤振速度。
部分 A 简答题(模块 I) 1. 定义术语“航空电子系统”。 答:- 安装在飞机上的所有依赖电子设备运行的电子和机电系统和子系统(硬件和软件)。航空电子系统对于使机组人员安全执行飞机任务和以最少的机组人员满足任务要求至关重要。 2. 简要解释飞行管理系统 (FMS) 答:- FMS 使用来自 GNSS 传感器、空气数据传感器和其他机载传感器的输出执行必要的导航计算并通过一系列显示单元向机组人员提供信息。飞行管理系统为飞机提供主要导航、飞行计划和优化航线确定和航路引导,通常包含以下相互关联的功能:导航、飞行计划、轨迹预测、性能计算和引导。为了实现这些功能,飞行管理系统必须与其他几个航空电子系统接口。 3. 解释 FBW 控制系统。答案:� 可实现更轻、性能更高的飞机,设计时具有宽松的稳定性� 良好的一致操纵性,在宽广的飞行包线和负载条件范围内保持恒定� 通过计算机控制控制面,连续自动稳定飞机� 自动驾驶仪集成� 无忧的机动特性� 能够自动集成其他控制装置,例如 o 前缘缝翼/襟翼和后缘襟翼以产生额外升力 o 可变机翼后掠角 o 推力矢量控制喷嘴和发动机推力� 消除机械控制运行 - 摩擦、反冲� 小型控制杆� 能够利用空气动力学不稳定配置