通过手持泡沫制造分支或固定泡沫制造器。这种介质也可有效用于固体燃料火灾或固体和液体可燃物的“混合”火灾。典型的例子是燃气涡轮发电机组的火灾、船舶发动机舱中的燃料火灾、热处理浴或可能发生燃料泄漏的地方,例如在维修区、车库或大修车间。高倍数泡沫的作用类似于中倍数泡沫,但它们需要由风扇供应空气的发电机,以达到生产所需的流速。它们通过覆盖或窒息火焰来工作,但由于其含水量较低,可用的冷却程度远低于中倍数泡沫。但是,它们可以产生至少 10 米的更大泡沫深度,因此可以扑灭高架上储存的货物中的火势。为此,泡沫的深度需要快速增加,以匹配或超过火势向上发展的速度。
摘要:近年来,半导体封装结构不断薄型化、复杂化,随着厚度减小,因材料不匹配引起的界面剥离现象会进一步增加,因此界面的可靠性是工业领域中的关键问题。尤其在半导体封装中广泛使用的聚合物受温度和湿度的影响较大。因此,本研究通过有限元分析对不同温度条件下封装结构界面的剥离情况进行预测,考虑吸湿和解吸的水分。通过吸湿试验获得了材料的扩散率和饱和含水量等性能。通过TMA和TGA分析了每种材料吸湿后的吸湿膨胀系数。进行微剪切试验,评估考虑湿度影响下各界面在不同温度下的黏附强度。进行了考虑温度和吸湿变形的界面剥离有限元分析。因此,考虑到回流过程中的原位水分解吸和温度行为,成功预测了界面分层。
干旱胁迫长期以来一直是农作物生产的制约因素,而气候变化和随之而来的农业用蓝色水资源减少则加剧了这一问题。大多数现有的粮食和经济作物都易受干旱胁迫的影响,干旱胁迫会造成农作物产量的大幅下降。因此,在不久的将来,我们开发出更能适应气候、更耐热、更耐旱的作物的能力将变得越来越重要。自然界中,植物进化出了两种重要的机制来克服干旱胁迫的影响:(1)避旱,通过最大限度地减少水分流失和优化水分吸收,使植物在缺水的环境中保持相对较高的组织含水量;(2)耐旱,通过维持细胞膨压(由渗透调节和细胞弹性引起)和提高原生质抗性,使植物能够忍受低组织含水量( Basu et al.,2016 )。随着可用于研究不同植物谱系的基因组资源越来越多,这些植物在抗旱或避旱方面表现出不同的策略和差异 ( Yin et al., 2014; Abraham et al., 2016; Yang et al., 2017; Chen et al., 2018 ),系统生物学以基因组规模的分子及其相互作用分析 ( Westerhoffiand Palsson, 2004 ) 为特征,正成为将基因与抗旱或避旱性状联系起来的一种流行方法。系统生物学研究产生的与干旱胁迫反应相关的基因的知识可以为构建合成生物学的生物部件文库提供信息,合成生物学旨在设计或重新设计生物过程 ( Cook et al., 2014 )。合成生物学在创造具有增强的抗旱或抗旱能力的转基因植物方面具有巨大潜力(Borland 等人,2014 年;De Paoli 等人,2014 年;Llorente 等人,2018 年)。本研究主题包括三篇以景天酸代谢 (CAM) 系统生物学为主题的文章,作为植物适应缺水条件的模型策略,以及四篇与使用合成生物学和基因工程方法对植物抗旱或抗旱进行遗传改良有关的文章。
710021,中国2研究与开发的深度,Shaanxi Heshi Heshi Dairy Co. Ltd.,Baoji,721200,中国摘要:Kefir Grains中的乳酸细菌和酵母丰富。在这项研究中使用了六种天然开菲尔晶粒,以分离和纯化64种酵母菌菌株和108家乳酸菌菌株。总共三种乳酸细菌和一种酵母菌(乳酸乳酸菌2C6,甲基乳杆菌6171,lactocillus lactobacillus plantarum 4M2和酿酒酵母6Y6)被检查,以蛋白质含量,含水量和比氏含量,酸和比氏的能力,均具有蛋白质的能力。蛋白水解能力,酒精产生以及酸和胆汁耐受性为4M2和6Y6。冻干用于创建细菌粉,这为随后开发直接VAT式(DVS)开发剂启动器奠定了基础。关键词:开菲尔谷物,乳酸菌,酵母,16S rDNA,蛋白水解能力
图 1 是垃圾焚烧发电厂(采用加料机型焚烧炉)主要处理工艺流程图。加料机是一种用于燃烧的装置,由可移动的炉排(具有网格状结构,用于搅拌和输送垃圾)组成。加料机型焚烧炉的工作原理是垃圾起重机将垃圾扔到加料机上,然后在高温下燃烧。在 MHIEC 的传统加料机(图 2)中,每个炉排的安装方式都与垃圾输送方向形成一个上坡。这种炉排安装方法的优点包括更好地搅拌垃圾,并确保在紧凑区域内完全燃烧所需的停留时间。我们的新型加料机是在利用这些优势的同时改进传统装置而开发的,具有稳定处理高含水量垃圾(海外垃圾中经常出现这种情况)和可扩展到大处理能力的特点。这些特点使得新型加煤机不仅可以在日本使用,而且可以在世界各地使用。
电转甲烷代表了将电能转化为化学能的一种创新方法。这种技术只有在将经济高效的电能来源与纯 CO 2 流相结合时才能真正成功。从这个角度来看,本文通过数值研究了一种创新工艺布局,该布局集成了用于燃烧固体燃料的流化床化学循环系统和基于可再生能源的电转甲烷系统。通过考虑一种煤和三种含水量不同的污水污泥作为燃料、以氧化锆为载体的 CuO 作为氧载体、通过水电解生产氢气以及以氧化铝为载体的 Ni 作为甲烷化催化剂来评估工艺性能。通过考虑部分产生的 CH 4 最终可以燃烧以干燥高水分含量的燃料来评估该工艺的自热可行性。最后,通过考虑仅使用来自可再生能源的电能,评估了所提出的工艺用作储能系统的能力。关键词:火力发电厂、化学循环燃烧、
是平整表面不平坦还是产生排水量,Iko Permascreed Li经过精心设计,以满足现代建筑项目的需求,使其成为效率和生态意识设计的明智选择。•较低体现的碳,Iko Permascreed Li有助于实现客户的可持续性目标。•全球变暖潜力的减少高达每吨73.44千克(*第三方EPD验证待处理)•零含水量,增强其环保性易于友好型。•快速设置公式,安装后仅一小时就可以行走。•简化的工作流消除了其他交易的延迟,从而提高了整体现场效率。•不受天气影响,可以全年安装。•柔性厚度,标称10mm – 40mm层(多个层的选项)。•与传统的混凝土筛选相比,体重减轻。•优化的排水量符合BS6229:2018标准。•不透水,有助于提供暂时的防水。•耐用且持久,设计为60多年的使用寿命。
病例1因个人原因失访。病例2在阿布替尼治疗后第6周随访时面部红斑持续改善,CEA评分降至1分,面部血管分布、经表皮失水量及皮肤含水量较前次随访有所改善。经医师综合评估后,患者停用阿布替尼,维持外用壬二酸凝胶。第8周随访时面部情况稳定,未出现不良反应。病例3在阿布替尼治疗后第6周随访时CEA评分已降至2分,相关辅助检查指标改善,医师综合评估后,继续现用方案。第8周随访时CEA评分降至1分,面部情况稳定。患者停用阿布替尼,维持外用壬二酸凝胶。病例4在接受abrocitinib治疗后第4周和第6周随访时面部红斑持续改善,未出现不良反应,目前仍在坚持目前的治疗方案。
以及影响木材含水率的橡胶木尺寸有一些步骤需要遵循。操作分为以下7个主要步骤: 1)研究橡胶木的生产 2)研究橡胶木的湿度和降低橡胶木湿度的方法 3)研究用于干燥橡胶木的烤箱 4)研究橡胶木的干燥方法与分析相关并作为收集数据指南的理论在不同温度但干燥时间相同的情况下降低橡胶木的湿度实验中采用80、85和90摄氏度3个温度水平,使用1、1.5和2英寸3种尺寸的橡胶木,数据总共重复3次。 5)收集数据的计划。并收集数据橡胶木的含水量。 6) 分析收集的数据并记录木材的结果。 7) 总结实验结果,该因素是用于干燥的温度。橡胶木的尺寸会影响橡胶木的湿度值,给出最低湿度的因素的最佳水平是在 90 摄氏度的温度下使用橡胶木 2 英寸的尺寸,其湿度值为橡胶木的含量低于工厂标准值。 关键词:橡胶、含水率、实验分析与设计、摘要
原料材料已经成功地制成3D物体,包括弹性体[4,5]、热固性树脂[6,7]和水凝胶[8,9]。该领域的不断进步使得打印条件不再那么严格[10],适应的材料范围也更加广泛。[11]水凝胶尤其令人感兴趣,因为3D聚合物网络结合了结构完整性和高含水量,从而产生了可调的3D环境,以纳入功能性生物系统。[12]它们的固有机械性能可以通过嵌入的添加剂(如纳米颗粒[13]或多组分共混物)轻松调节——这些添加剂已经适应了3D打印。 [14,15] 对于生物复合材料 3D 打印,立体光刻 (SLA) [16] 或数字光处理 (DLP) [17] 依赖于低粘度可交联树脂系统,而直接墨水书写 (DIW) 3D 打印可以通过剪切稀化水凝胶实现。[18] 对于这些 DIW 系统,可以采用二次光交联步骤来共价稳定主要 3D 打印对象。[19]