耗散在自然界中普遍存在;例如原子核的放射性衰变和吸收介质中的波传播,耗散是这些系统与不同环境自由度耦合的结果。这些耗散系统可以用有效非厄米汉密尔顿量进行现象学描述,其中引入非厄米项来解释耗散。非厄米性导致复杂的能谱,其虚部量化系统中粒子或能量的损失。非厄米汉密尔顿量的简并性称为异常点 (EP),其中特征值和相关的特征态合并 [1,2]。 EP的存在已在许多经典系统中得到证明[3-11],并应用于激光模式管理[12-14]、增强传感[15-20]和拓扑模式传输[21-24]。
III. 定义 可接触激光辐射 – 发射的激光辐射与可接触发射限值进行比较,以确定激光的危险等级。 ANSI – 美国国家标准协会。该计划基于美国国家激光安全使用标准 (ANSI Z136.1-2014)。 光圈 – 激光辐射通过的开口或窗口(位于激光防护外壳中)。 衰减 – 任何激光束通过散射或吸收介质时,其辐射通量减少。 授权人员 – 经首席研究员或实验室主管批准安装、操作和/或维护激光器或激光系统的个人。 厌恶反应 – 身体为避免暴露在强光下而做出的一种自动物理反应。典型的反应可以表现为:眼睑闭合、眼球运动、瞳孔收缩或头部运动。厌恶反应被认为会将暴露于明亮(可见)光的时间限制在 0.25 秒以内。
如今,掺杂稀土离子的石英光纤激光器,尤其是 Y b 3+ 光纤激光器,其平均功率已达到数千瓦量级,许多技术应用已开始显现可行性。例如:医疗手术、岩石钻探、远程云感测、射电天文学、太空无线电通信、卫星通信、无线电传输、远程激光通信以及用于远程充电电池的激光器。因此,其中一些应用需要研究与激光束大气传播相关的现象 [1]、[2]、[3] 和 [4]。最近,一些研究开始对速度场作为动态变量的数值解进行建模 [5],这与先前研究规定流体速度 [6]、[7] 不同。当激光束传播通过吸收介质时,会发生称为热晕的效应。尽管介质的吸收效应非常小,但当流体为空气时,会促进激光束附近的温度和密度场的变化。温度变化会引起折射率的变化,从而
实现具有吸引人的性能指标和与硅光子平台兼容的紧凑型芯片脉冲激光器是当代纳米光子学的重要目标。在这里,是否可以将2D材料用作增益和饱和吸收介质来实现紧凑型综合Q-用被动Q开关的纳米光激光器的基本问题,并通过检查广泛的2D材料家族来提出和解决。通过开发涉及半古典速率方程的时间耦合模式理论框架来进行研究,该框架能够通过2D材料严格处理增益和可饱和的吸收,从而可以执行稳定性和分叉分析涵盖广泛的参数空间。可以通过不同的2D材料获得脉冲训练指标(重复速率,脉冲宽度,峰值功率)的范围。我们的工作表明,使用2D材料增强的纳米光腔可以使被动q交换,重复速率不得超过50 GHz,短脉冲持续时间降至几个picseconds,而峰值功率超过了几毫升。如此有吸引力的指标,以及2D材料的超薄性质以及电气调整其性质的能力,证明了提出的紧凑和灵活的集成激光源的平台的潜力。
摘要。由于限制了诸如耗电耗电和可扩展性之类的限制,因此对较大的机器学习模型的培训和推断需求不断增加。光学器件是提供较低功率计算的有前途的竞争者,因为通过非吸收介质的光传播是无损操作。但是,要用光进行有用的高效计算,在光学上产生和控制非线性是一种仍然难以捉摸的必要性。多模纤维(MMF)已证明它们可以提供平均功率的微小效应,同时保持并行性和低损失。我们提出了一种光学神经网络体系结构,该体系结构通过通过波前形状控制MMF中超短脉冲的传播来执行非线性光学计算。使用替代模型,发现最佳参数集可以用电子计算机最少利用来为不同的任务编程此光学计算机。与同等执行的数字神经网络相比,模型参数数量的显着降低了97%,这导致总体上99%的数字操作减少。我们进一步证明,还可以使用竞争精确的精度执行完全的光学实现。
当两种成分不同的溶液混合时,会释放出混合的自由能。过去几十年来,人们深入研究了这种现象,以便获取所谓的盐度梯度能。电容混合 (CapMix) 是能够获取这种能量的最早的技术之一,其工作机制基于流体电化学电池,类似于超级电容器。由于这种混合现象适用于液体和气体,因此其想法是从人为 CO2 中获取能量。ERC 资助的 CO2CAP 项目首次提出利用绿色离子液体 (IL),即室温下的生物衍生熔盐,作为 CapMix 电池中的电解质和 CO2 吸收介质。其原理是在两个电极充电/放电期间,在 IL 中流动浓缩的 CO2 气流,交替进行真空步骤。CO2 将在电极/IL 界面处引起电荷的电双层 (EDL) 膨胀,从而将释放的混合能转化为电能。此外,我们预计,当存在热梯度以收集低品位废热时,也会出现类似的现象。本博士论文的主要研究目标包括(不一定全部):o 设计、制造和电/电化学表征定制流体超级电容器,利用创新架构能够
脑机接口 (BCI) 是一种从大脑获取信号、转换信号并输出到设备以实现所需动作的系统 [1]。BCI 系统由硬件和软件组件组成,一般分为五个步骤,即信号采集、预处理、特征提取、特征转换和设备输出。根据 BCI 系统所连接的功能成像系统,BCI 系统可分为几种类型,例如脑电图 (EEG)-BCI、功能性磁共振成像 (fMRI)-BCI 和功能性近红外光谱 (fNIRS)-BCI。在本综述中,我们详细讨论了基于 fNIRS 的 BCI 及其功能、其实用程序的优缺点、其在有用技术中的应用和实现以及 fNIRS-BCI 的未来。功能性近红外光谱 (fNIRS) 是一种光学成像技术,其中大脑中发射的光由于吸收和散射而衰减。它利用骨骼和皮肤的一般透明特性来进入被监测的组织。当吸收的光进入吸收介质内部时,探测器会测量散射光中未被吸收的部分(图 1)。由于给定刺激引起的血流动力学反应,氧合血红蛋白 (OxyHb) 和脱氧血红蛋白 (de-oxyHb) 分别增加和减少。当光发射时,血流动力学反应的区域变化会导致光吸收和发色团的吸收光谱的区域变化,从而允许利用比尔-朗伯定律以非侵入性方式量化氧合血红蛋白和脱氧血红蛋白 [ 2 , 3 ]。动脉血流中氧合血红蛋白浓度与静脉血流中脱氧血红蛋白浓度与总血红蛋白浓度之比
辐射热计通过吸收介质的热升高来测量光功率。第一台辐射热计由兰利 [ 1 ] 于 1881 年为恒星辐射测量而发明,此后技术不断发展。20 世纪 60 年代,第一批激光器 [ 2 ] 开始商用,美国国家标准与技术研究所 (NIST,West 等 [ 3 , 4 ]) 引入了激光量热法来满足激光功率计校准的需要。辐射测量领域的一个重要里程碑是 1985 年发明的低温辐射计 [ 5 ],它至今仍是该领域最精确的主要标准 [ 6 – 10 ],其 (k = 2) 不确定度低于 0.05%。虽然低温辐射计的不确定度低于室温辐射计,但它们价格昂贵、体积庞大且不方便用户使用。为了实现高精度,低温恒温器中的辐射热计不能加热到超出其线性工作范围,这为可测量的激光功率设定了上限。 这意味着这些仪器的动态范围是有限的,如果测量更高的激光功率,必须使用可追溯到低温辐射计或其他绝对探测器的传递标准探测器。 维持较长的校准链需要时间和人力,并且测量不确定性会在这些链中累积。 为了缩短校准链并使绝对辐射计价格合理且更易于使用,可预测量子效率探测器 (PQED) 于 2013 年开发,它可以在低温 [ 11,12 ] 或室温 [ 13 ] 下工作。 然而,量子探测器在 1 mW 时饱和,因此其测量范围与大多数低温辐射计的测量范围相似。 2010 年进行的 EUROMET 高功率激光器辐射功率国际比对 [ 14 ] 表明,各国计量机构之间 1 W – 10 W 激光功率测量结果的一致性仅为 ∼ 1% 水平。因此,仍然需要
摘要:密集的核-壳纳米线阵列具有作为超吸收介质用于制造高效太阳能电池的巨大潜力。通过对室温光反射 (PR) 光谱的详细线形分析,采用 GaAs 复介电函数的一阶导数高斯和洛伦兹模型,我们报告了具有不同壳厚度的独立 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收特性。纳米线 PR 光谱的线形分析返回了能量在 1.410 和 1.422 eV 之间的双重共振线,这归因于 GaAs 纳米线芯中的应变分裂重空穴和轻空穴激子吸收跃迁。通过对 PR 特征的 Lorentzian 分析评估的激子共振光振荡器强度表明,与参考平面结构相比,纳米线中的 GaAs 带边光吸收显著增强(高达 30 倍)。此外,将积分 Lorentzian 模量的值归一化为每个纳米线集合内的总 GaAs 核体积填充率(相对于相同高度的平面层估计在 0.5-7.0% 范围内),从而首次实现了 GaAs-AlGaAs 核-壳纳米线的 GaAs 近带边吸收增强因子的实验估计,该因子在 22-190 范围内,具体取决于纳米线内核-壳结构。如此强的吸收增强归因于周围的 AlGaAs 壳(在目前的纳米结构中,其平均厚度估计在 ∼ 14 到 100 纳米之间)对入射光进入 GaAs 核的波导改善。关键词:III-V 化合物、GaAs-AlGaAs 核-壳纳米线、光反射光谱、近带边跃迁、增强光吸收、纳米线太阳能电池■简介
耗散在自然界中普遍存在;例如原子核的放射性衰变和吸收介质中的波传播,耗散是这些系统与不同环境自由度耦合的结果。这些耗散系统可以用有效非厄米汉密尔顿量进行现象学描述,其中引入非厄米项来解释耗散。非厄米性导致复杂的能谱,其虚部量化系统中粒子或能量的损失。非厄米汉密尔顿量的简并性称为异常点 (EP),其中特征值和相关的特征态合并 [1,2]。许多经典系统 [3-11] 已证明有效哈密顿的存在,并应用于激光模式管理 [12-14]、增强传感 [15-20] 和拓扑模式传输 [21-24]。尽管有效哈密顿方法是几十年前作为量子测量理论的一部分发展起来的,但最近对单电子自旋 [25,26]、超导量子比特 [27] 和光子 [28-30] 的实验扩大了人们对非厄米动力学中独特量子效应的兴趣。已经采用两种方法来研究量子区域内的非厄米动力学。第一种方法是通过将非厄米哈密顿量嵌入到更大的厄米系统中 [25,26,30],通过称为哈密顿膨胀的过程来模拟这些动力学。第二种方法是将非厄米动力学直接从耗散量子系统中分离出来 [27] 。为了理解这种方法,回想一下耗散量子系统通常用包含两个耗散项的林德布拉德主方程来描述:第一个项描述系统能量本征态之间的量子跳跃,第二个项产生相干非幺正演化 [31 – 33] 。通过抑制前一个项,得到的演化是