纠缠光子表现出非经典的光物质相互作用,为材料和分子科学创造了新的机会。例如,在纠缠双光子吸收中,强度依赖性呈线性变化,就好像只有一个光子存在一样。纠缠双光子吸收截面接近但不匹配单光子吸收截面。纠缠双光子截面也不遵循经典的双光子分子设计图案。诸如此类的问题为丰富但新兴的纠缠光物质相互作用领域埋下了种子。从这个角度来看,我们使用纠缠光子光谱的实验发展来概述该领域的现状。既然已经概述了基本工具,现在是时候开始探索材料、分子和设备如何控制或利用与纠缠光子的相互作用了。
卤化铅钙钛矿纳米晶体(LHP NC)具有诸多优良特性,包括宽范围的带隙可调性、可忽略的电子-声子耦合1、大的吸收截面2和窄的发射线宽,此外还具有溶液加工性、低成本合成和与其他现有器件组件的兼容性3,4,是潜在光电应用的有前途的材料,例如发光显示器、激光器和用于大面积可印刷光收集装置的纳米晶体墨水。5 – 10然而,尽管它们具有高量子产率(QY)和表面不敏感性,但基于溶液加工钙钛矿的第一个发光二极管(LED)的外部量子效率却不到 0.2%。 11 需要持续努力了解电子空穴复合途径和选择性改进辐射途径,才能将性能提高到约 15%。12 这主要是通过解决诸如增加高移动电荷的限制、配体交换和配体密度控制、表面缺陷钝化、掺杂和抑制俄歇非辐射复合等问题来实现的。13 – 17 然而,对
摘要:胶体纳米晶硅量子点 (nc-SiQDs) 在近红外 (NIR) 中的双光子激发以及在 NIR 中的光致发光在深度生物成像领域具有潜在的应用前景。使用双光子激发测量胶体 nc-SiQDs 的简并双光子吸收 (2PA) 截面的光谱,光谱范围为 1.46 < ℏ ω < 1.91 eV(波长 850 > λ > 650 nm),高于双光子带隙 E g (QD) /2,代表性光子能量为 ℏ ω = 0.99 eV(λ = 1250 nm),低于此带隙。直径为 d = 1.8 ± 0.2 nm 和 d = 2.3 ± 0.3 nm 的 nc-SiQDs(均用 1-十二烯钝化并分散在甲苯中)的双光子激发光致发光 (2PE-PL) 光谱强度与甲醇中已知浓度的罗丹明 B 染料的 2PE-PL 光谱强度一致。对于直径较小的纳米晶体,观察到 2PA 横截面较小,并且观察到 2PA 的起始点从块体 Si 的双光子间接带隙蓝移,这与激子的量子约束预期一致。在各种生物组织中模拟了使用 2PE-PL 进行生物成像的 nc-SiQDs 的效率,并将其与其他量子点和分子荧光团的效率进行了比较,发现在更深的深度下它们相当或更胜一筹。关键词:双光子吸收光谱、双光子吸收截面、硅纳米晶体、量子点、双光子激发光致发光、生物成像 N