植物科学领域的植物生物技术部分主要发表应用研究,研究如何使用现代遗传技术改善植物(Lloyd and Kossmann,2021)。该研究主题旨在允许该部分的编辑突出一些自己的植物生物技术工作。作物需要许多方面,例如,在变化的气候条件下提高产量对于帮助养活不断增长的世界人群至关重要 - 这意味着植物生物技术对于粮食安全至关重要。植物也是药物活性化合物的良好来源,也可以在遗传上操纵,以使其成为生产药物蛋白的有用平台。这样的植物可以隔离量增加的药物,将通过降低成本来帮助许多医疗。植物的遗传操纵是许多植物生物技术的基础,从传统的植物育种到转基因和基因组编辑技术范围。理解和改善这些技术的用途将使植物生物技术学家能够更加有效地改善植物。该研究主题旨在研究各种不同的植物生物技术问题,从理解和克服非生物胁迫耐受性到操纵专业代谢以及基因组编辑技术的发展。Khan等。 通过测试小麦在暴露于内生真菌时如何在盐胁迫下如何更好地生长。 铁缺乏或吸收效率也可能对植物生长和弹性有很大的限制。Khan等。通过测试小麦在暴露于内生真菌时如何在盐胁迫下如何更好地生长。铁缺乏或吸收效率也可能对植物生长和弹性有很大的限制。植物生物技术的主要方面需要大量精力来克服不同的非生物压力,因为气候变化已经通过增加这些类型的压力会影响农作物的产量(Ray等,2019),并且可能只会因未来的气候变化而加剧。他们表明,这种相互作用通过激素调节导致原代和继发代谢产物的改变,这有助于克服盐分胁迫。在考虑提高植物胁迫耐受性的生物技术手段时,这项工作突出了包括植物 - 内植物相互作用的潜力。Liu等。 识别出一种烟草突变体,该突变体生长得更好。 他们以表型进行了进一步的表征,并采用了转录组分析,显示了与分子和生理变化有关的基因表达差异。 基于 RT-QPCR基因表达研究在很大程度上取决于适当的参考基因的可用性。 li等。 识别一组Liu等。识别出一种烟草突变体,该突变体生长得更好。他们以表型进行了进一步的表征,并采用了转录组分析,显示了与分子和生理变化有关的基因表达差异。RT-QPCR基因表达研究在很大程度上取决于适当的参考基因的可用性。li等。识别一组
目前,使用催化剂来促进吸附剂再生,被认为是减少CO 2捕获过程所需能量的有效方法。旨在鉴定具有高CO 2吸收效率的稳定且具有成本效益的催化剂,我们在这里研究了在水胺溶液的热再生过程中粉煤灰(FA)的性能。通过实验测量了添加FA的CO 2饱和乙醇盐水的解吸速率,环状容量和热效率,并将结果与没有八种不同催化剂的相同溶液获得的结果进行了比较。实验结果表明,与非催化系统相比,催化剂显着改善了再生,而FA是其中最有效的。在不同温度下对CO 2解吸的进一步研究表明,FA提供的解吸性能与在温度下至少高5℃的非催化系统相当,并且始终在同一温度下,尤其是在此过程开始时始终显着降低热效力。最后,回收测试表明FA具有良好的稳定性,即使经过20个周期,其催化效率也保持较高。总而言之,可以将FA视为能源有效CO 2捕获的具有成本效益的催化剂,值得进一步研究以促进其在工业规模的工厂中的应用。
摘要 光学微波动能电感探测器 (MKID) 的典型材料是金属,在可见光和近红外光中的自然吸收率约为 30-50%。为了达到高吸收效率 (90-100%),必须将 KID 嵌入光学堆栈中。我们展示了一种针对 60 nm TiN 薄膜的光学堆栈设计。光学堆栈被建模为传输线的各段,其中每个段的参数与各层的光学特性有关。我们从光谱椭圆偏振测量中推导出 TiN 薄膜的复介电常数。设计的光学堆栈针对宽带吸收进行了优化,从顶部(照明侧)到底部由以下组成:85 nm SiO 2、60 nm TiN、23 nm SiO 2 和 100 nm 厚的 Al 镜。我们展示了该堆栈的模型吸收和反射,其在 400 nm 至 1550 nm 范围内的吸收率 > 80%,在 500 nm 至 800 nm 范围内的吸收率接近 1%。我们使用商用分光光度计测量了该堆栈的透射和反射。结果与模型非常吻合。
摘要 - 本文提出了一种基于密度的拓扑处理方案,用于局部优化由损失的分散材料制成的纳米结构中的电力耗散。我们使用复杂偶联的杆子(CCPR)模型,该模型可以准确地对任何线性材料的分散剂进行建模,而无需将它们限制为特定的材料类别。基于CCPR模型,我们在任意分散介质中引入了对电力耗散的时间域度量。CCPR模型通过辅助微分方程(ADE)合并到时域中的麦克斯韦方程中,我们制定了基于梯度的拓扑优化问题,以优化在宽频谱上的耗散。为了估计目标函数梯度,我们使用伴随字段方法,并将伴随系统的离散化和集成到有限差分时间域(FDTD)框架中。使用拓扑优化球形纳米颗粒的示例,由金和硅制成,在可见的 - 粉状谱光谱范围内具有增强的吸收效率。在这种情况下,给出了与基于密度的方法相关的等离子材料拓扑优化的拓扑挑战的详细分析。我们的方法在分散媒体中提供了有效的宽带优化功率耗散的优化。
•自21世纪初以来,人为的气候强迫已经加速了,这主要是由于全球经济不断增长并降低了土地和海洋Co 2水槽的吸收效率(Canadell等,2007)。基于较旧的归因期的研究经常低估全球变暖对未表现的近期极端可能性的影响,这反映了归因期间频率和样本外验证期间频率之间的差异(Diffenbaugh,2020年)。•驱动极端事件发生的物理过程之间的发生时间尺度不同,提出了独特的研究问题,并需要对事件的不同定义来了解基本机制。•过去的极端事件的数量本质上很小,由于观测值的稀缺性,可能会忽略许多事件(Seneviratne等,2021)。因此,动态模型的集合通常被其驱动程序的检测和归因委托,并且可能由模型限制引起的误解。•最新的数值气候模型中关键过程和反馈机制的不良表示,结合了初始状态下的不确定性,使复杂和混乱的系统(如大气)中的预测变得复杂(Faranda等,2017)。
人们对天然蚕丝作为工程复合材料的替代增强材料的兴趣日益浓厚。本文,我们在相关研究背景下总结了作者过去几年对两种常见蚕丝和蚕丝纤维增强塑料 (SFRP) 的研究。家蚕丝纤维由于其弹塑性变形机制,在常温和低温条件下表现出良好的强度和韧性。特别是野生柞蚕丝还表现出微米和纳米纤维化,这是其韧性和抗冲击性的重要机制。对于 SFRP 复合材料,我们发现:(i) 为获得最佳增强增韧效果,必须将蚕丝纤维体积分数达到 50% 以上;(ii) 更坚韧的柞蚕丝比家蚕丝具有更好的增强增韧作用;(iii) 冲击性能和韧性是 SFRP 的优势性能;(iv) 天然蚕丝与其他纤维杂交可以进一步提高 SFRP 的机械性能和在工程应用中的经济性; (五)轻量化结构设计可以提高 SFRP 的能量吸收效率。对蚕丝和蚕丝纤维增强聚合物复合材料 (SFRP) 的综合力学性能和增韧机制的了解可以为材料设计和应用提供关键见解。
本研究旨在评估用于第三代聚光太阳能发电系统中热能吸收器的粒子的光学特性。其特性包括使用积分球进行 UV-Vis NIR 测量以测量太阳吸收率,同时使用反射计测量热发射率。通过结合吸收率和发射率数据,计算出太阳吸收效率。利用激光闪光分析、差示扫描量热法和热重分析来确定热导率和比热。最初测量的粒子的太阳吸收率为 0.90。在 1000 ◦ C 的空气中暴露后,它降至 0.73。然而,经过还原过程,粒子恢复了 0.90 的吸收率。热老化和恢复重复多次,始终达到 0.90 的吸收率。粒子的热导率范围为 0.50 至 0.88 W/(mK)。发现太阳光吸收率受颗粒中氧化铁类型的影响。以赤铁矿为主的颗粒太阳光吸收率降低,而含有磁铁矿、方铁矿和铁的颗粒吸收率则增加。开发颗粒的估计成本比当前产品低十倍以上。考虑到组件成本对平准化电力成本 (LCOE) 有显著影响,与其他产品相比,此次降价相当于 LCOE 下降 8%。低成本的热能介质有望在第三代聚光太阳能发电系统中降低 LCOE。
在动物肠道中未被宿主使用的铁可以直接由微生物(尤其是有害的生物)使用。有机铁(例如Fe-Gly)在体内具有较高的消化率和吸收效率。目前尚不清楚它是否可以减少ETEC对铁的利用,从而减轻ETEC感染造成的伤害。该实验主要研究将Fe-gly添加到饮食中对被ETEC感染的断奶小猪的生长性能,铁营养状况和肠形态的影响。研究发现,在饮食中增加50 mg的Fe-gly会显着增加30.6和35.3%(p <0.05),并减轻了腹泻问题,并降低了ETEC感染引起的生长绩效。腹泻率降低了40%(从31.25%降低至18.75%)。除了保护小猪的健康外,添加Fe-gly还可以提高Piblet血清中的TIBC水平(P <0.05),从而增强了它们结合和转运铁的能力。从基因表达结果和组织段结果中,添加Fe-Gly也可以减轻ETEC挑战在某种程度上引起的空肠的损害(p <0.05)。总而言之,增加50毫克的Fe-gly可以满足小猪的每日需求,提高铁的利用效率并减少肠中的残留铁。这减少了用于肠道病原性微生物的铁,从而抑制了肠道病原体的增殖并确保小猪的肠道健康。
本文介绍了一种新型,可调且高效的金属 - 绝缘体 - 金属(MIM)等离子体设备的设计和数值研究,专为近红外(NIR)应用而设计。该设备在MIM波导中策略性地放置了策略性的存根谐振器。我们引入了两个小扰动,一个三角形和一个矩形,以实现出色的功能多功能性。采用有限元方法(FEM)并通过传输线方法(TLM)验证的综合数值分析证明了这两种方法之间的工作原理和出色的一致性。我们的模拟驱动方法,uti液化了遗传算法(GA)进行加速优化,对于通过纯粹的实验方法实现性能水平很难或昂贵,至关重要。GA启用了庞大的参数空间的有效探索,设备配置的迭代细化以及几何特征的微调。这种细致的优化使我们能够控制模拟结构中的复杂相互作用。提出的设备基于调整后的几何参数提供不同的功能,包括:A。平坦的带通滤波:在420 nm×540 nm的紧凑型足迹中,达到最大传输效率为95.8%。B.双波段带通滤波:在稍大的450 nm×540 nm尺寸的情况下,保持高传输效率为88.4%。C.三波段缺口滤波:在特定的共振波长中显示最小传输(低于1%),以进行靶向信号抑制。D.等离子体诱导的透明度(PIT)效应:在各种光学功能中提供潜在的应用。和E.完美的吸收:达到99.62%的最大吸收效率,为有效的光收集和操纵铺平了道路。这种多功能等离子设备的紧凑性,可调性和不同的NIR功能性的结合。它对小型化的光学组件,集成光子电路和高级光 - 物质相互作用有希望。我们的发现对紧凑,高效且易于制造的光子技术的发展产生了重大贡献。
基于定期驱动的量子系统(“ Floquet Engineering”)基于浮标理论的频率高频电磁场来控制电子特性,该理论已在上一十年中彻底彻底实现TUM电路14-17,固态系统18-21和纳米效应22-28。由于无法通过电子吸收效率,因此只能穿衣服,修改所有电子特性。这样的调味料既导致电子中现有术语的重新归一化,也导致了新术语的出现(例如自旋轨道耦合29),这大大改变了带结构和电子传输。,电磁敷料会导致电子相互作用的实质性修改,从而诱导以排斥电位30结合的电子状态,将电子配对的电子配对,其中包含带有不同ef-ef-ef-ef-eff- eff-fifecte的电荷载体和新的相互作用(例如,与新的相互作用)(例如,相互群体和新密度),并构成了whos的范围 - 非羟基分散剂(例如,在最简单的一维单频枢轴模型中)33。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。相互竞争的相互作用导致驱动系统中多体相变的出现,包括诸如Kitaev旋转液体34-36的相关阶段34-36和超导阶段的相关阶段以及来自互动式的persiontaction 37或相互作用的超导阶段。密度波38,39)。