超维计算 (HDC) 采用并行计算范式和高效学习算法,非常适合资源受限的人工智能 (AI) 应用,例如边缘设备。基于忆阻设备的内存计算 (IMC) 系统通过提供节能硬件解决方案对此进行了补充。为了充分利用忆阻 IMC 硬件和 HDC 算法的优势,我们提出了一种硬件算法协同设计方法,用于在忆阻片上系统 (SoC) 上实现 HDC。在硬件方面,我们利用忆阻交叉开关阵列固有的随机性进行编码,并采用模拟 IMC 进行分类。在算法层面,我们开发了硬件感知编码技术,将数据特征映射到超维向量中,从而优化了忆阻 SoC 内的分类过程。硬件实验结果表明语言分类任务的准确率为 90.71%,凸显了我们的方法在边缘设备上实现节能 AI 部署的潜力。
数字计算机不断增长的处理能力需求不可能无限期地得到满足,除非计算领域出现范式转变。神经形态计算从大脑的高度并行、低功耗、高速和抗噪声计算能力中汲取灵感,可能带来这样的转变。来自学术界和工业界的许多研究人员一直在研究材料、设备、电路和系统,以实现神经元和突触网络的一些功能,从而开发神经形态计算平台。这些平台采用各种硬件技术设计,包括成熟的互补金属氧化物半导体 (CMOS) 和新兴的忆阻技术,如基于 SiO x 的忆阻器。本文重点介绍了用于神经形态系统的 CMOS、基于 SiO x 的忆阻器和混合 CMOS-忆阻硬件的最新进展。本文提供了各种设备的新成果和已发表成果,这些设备旨在复制神经元、突触和简单脉冲网络的选定功能。结果表明,CMOS 和忆阻设备组装在不同的神经形态学习平台中,以执行简单的认知任务,例如对基于脉冲速率的模式或手写数字进行分类。本文设想,所展示的内容将对非常规计算研究界有用,因为它可以深入了解神经形态硬件技术的进步。
除非计算领域出现范式转变,否则数字计算机不断增长的处理能力需求不可能无限期地得到满足。神经形态计算从大脑的高度并行、低功耗、高速和抗噪声计算能力中汲取灵感,可能带来这样的转变。来自学术界和工业界的许多研究人员一直在研究材料、设备、电路和系统,以实现神经元和突触网络的一些功能,从而开发神经形态计算平台。这些平台采用各种硬件技术设计,包括成熟的互补金属氧化物半导体 (CMOS) 和新兴的忆阻技术,如基于 SiO x 的忆阻器。本文重点介绍了用于神经形态系统的 CMOS、基于 SiO x 的忆阻器和混合 CMOS-忆阻硬件的最新进展。本文提供了各种设备的新成果和已发表成果,这些设备是为了复制神经元、突触和简单脉冲网络的选定功能而开发的。结果表明,CMOS 和忆阻设备组装在不同的神经形态学习平台中,以执行简单的认知任务,例如对基于脉冲速率的模式或手写数字进行分类。本文设想,所展示的内容将对非常规计算研究界有用,因为它可以深入了解神经形态硬件技术的进步。
[1] 赵学历 , 金尚忠 , 王乐 , 等 . 基于结构函数的 LED 热特 性测试方法 [J]. 光电工程 , 2011, 38(9): 115-118. [2] 张立 , 汪新刚 , 崔福利 . 使用 T3Ster 对宇航电子元器件 内部热特性的测量 [J]. 空间电子技术 , 2011(2): 59-64. [3] MEY G, VERMEERSCH B, BANASZCYK J, et al. Thermal Impedances of Thin Plates[J]. International Journal of Heat and Mass Transfer, 2007, 50: 4457-4460. [4] VASILIS C, PANAGIOTIS C, IONNANIS P, et al. Dy- namic Thermal Analysis of Underground Medium Power Cables Using Thermal Impedance, Time Constant Distri- bution and Structure Function[J]. Applied Thermal Engi- neering, 2013, 60: 256-260. [5] MARCIN J, JEDRZEJ B, BJORN V, et al. Generation of Reduced Dynamic Thermal Models of Electronic Systems from Time Constant Spectra of Transient Temperature Responses[J] Microelectronics Reliability, 2011, 51: 1351-1355. [6] MARCIN J, ZOLTAN S, ANDRZEJ N. Impact of
我们打算证明,我们可以构建专用硬件,使用忆阻器和忆电容将神经网络直接映射到该硬件上,从而提高网络的能源效率。我们将使用以集成电路为重点的模拟程序 (SPICE) 来模拟我们的忆电容和忆阻器。使用此模型,我们将创建一个忆阻和忆电容元件的储存器,并在一系列忆电容与忆阻器比率中评估我们的设计,同时测试储存器结构,包括小世界、交叉开关、随机、分层和幂律实现。我们假设我们的设计将大大提高神经网络的能源效率和性能。
混合忆阻器-CMOS神经元用于全硬件忆阻脉冲神经网络的原位学习 张旭萌 #1,2,3、陆建 #2、王睿 2,3、魏劲松 2、石拓 2,4、窦春梦 2,3、吴祖恒 2,3、尚大山 2,3、幸国忠 2,3、刘奇*1,2、刘明 1,2 1 复旦大学前沿芯片与系统研究所,上海 200433,中国,2 中国科学院微电子研究所微电子器件与集成技术重点实验室,北京 100029,中国,3 中国科学院大学,北京 100049,中国,4 浙江实验室,杭州 311122。 E-mail: qi_liu@fudan.edu.cn #这些作者对这项工作做出了同等贡献。摘要:
摘要 随着基于忆阻技术的内存计算系统的迅速兴起,将此类内存设备集成到大规模架构中是需要解决的主要问题之一。在本文中,我们研究了基于 HfO 2 的忆阻设备在大规模 CMOS 系统(即 200 毫米晶圆)中的集成。分析了单金属-绝缘体-金属设备的直流特性,同时考虑了设备间的差异和开关特性。此外,还分析了样品原始状态下漏电流水平的分布,并将其与被测设备中未成形的忆阻器数量相关联。最后,将得到的结果拟合到基于物理的紧凑模型中,从而可以将其集成到更大规模的模拟环境中。
压力传感器在可穿戴电子设备和电子皮肤中充当核心组件时,已经获得了更广泛的市场。为了实现高性能柔性压力传感器,研究人员对传感器材料,结构和设备设计进行了创新研究。聚(3,4-乙二醇二噻吩):聚苯乙烯磺酸盐(PEDOT:PSS)是一种广泛使用的导电聚合物,由于其异常电导率,易于处理,易于处理和生物相容性,因此引起了相当大的关注。作为一种多功能且灵活的功能,PEDOT:PSS可以将其发展为各种形式,对新兴的传感应用具有重要意义。本文概述了使用PEDOT:PSS的最新进步:用于灵活的压电传感器的PSS,同时还讨论了其在此类传感器中的应用以及用于提高其性能的方法和机制。
摘要 — 卷积神经网络 (CNN) 是最重要的深度神经网络 (DNN) 类别之一,有助于解决许多与图像识别和计算机视觉相关的任务。它们使用传统 CMOS 技术和数字设计技术的传统实现仍然被认为非常耗能。浮点 CNN 主要依赖于 MAC(乘法和累加)运算。最近,基于 XNOR 和位计数运算的经济高效的 Bite-wise CNN 已被视为可能的硬件实现候选。然而,由于内存和计算核心之间密集的数据提取导致的冯诺依曼瓶颈限制了它们在硬件上的可扩展性。XNOR-BITCOUNT 操作可以通过在忆阻交叉开关阵列上执行的内存计算 (IMC) 范例轻松实现。在新兴的忆阻设备中,自旋轨道扭矩磁随机存取存储器 (SOT-MRAM) 提供了具有更高导通电阻的可能性,从而可以降低读取电流,因为所有交叉开关阵列都是并行读取的。这有助于进一步降低能耗,为更大的交叉开关设计铺平道路。本研究提出了一种基于 SOT-MRAM 的交叉开关架构,能耗极低;我们研究了工艺变异性对突触权重的影响,并对整个交叉开关阵列进行了蒙特卡罗模拟,以评估错误率。模拟结果表明,与其他忆阻解决方案相比,此实现的能耗较低,每次读取操作的能耗为 65.89 fJ。该设计对工艺变化也具有很强的鲁棒性,读取误差极低,最高可达 10%。
○ 将 AI 素养提高到一定水平 ・对 AI 开发项目的时间表、开发结构、分析方法、数据的数量和质量等有清晰的认识 ・在开展项目时要有明确的目标感,在计划阶段不要限制方法 ○ 消除部门之间的壁垒,充分利用外部数据和知识 ・促进拥有和利用数据的现场部门与数据分析部门之间的合作 ・与拥有丰富知识和数据的企业、大学等研究机构合作 ○ 为分析员创造有吸引力的工作环境 ・引入提高持续学习 AI 技术激励的制度 ・创造分析员可以发挥好奇心工作的环境 ・增强提高技能的机会