2023年2月7日 — 根据香港法例,任何人士如明知而故意申报失实或塡报明知其为虚假或不相信为真实的资料,即属违法,而该人所获发的任何签.证/进入许可或获准的逗留期限即告无效。
本文提供了一种使用自动测试设备 (ATE) 评估下机航空电子系统健康监测可信度的方法。指标包括假阳性、假阴性、真阳性和真阴性的概率。我们首次考虑了刺激信号源 (SSS) 的不稳定性、测量通道误差的随机和系统分量以及系统本身的可靠性特性。我们考虑了永久性故障和间歇性故障的指数分布的具体情况,并推导出计算可信度指标的公式。数值计算说明了正确和错误决策的概率如何取决于精度参数。我们表明,当刺激信号的标准差增加时,假阳性和假阴性的概率增加得比真阳性和真阴性的概率下降得快得多。对于甚高频全向测距 (VOR) 接收器,我们证明即使刺激信号源产生的随机误差为零,假阳性和假阴性的概率也不为零。
本文提供了一种使用自动测试设备 (ATE) 评估下机航空电子系统健康监测可信度的方法。指标包括假阳性、假阴性、真阳性和真阴性的概率。我们首次考虑了刺激信号源 (SSS) 的不稳定性、测量通道误差的随机和系统分量以及系统本身的可靠性特性。我们考虑了永久性故障和间歇性故障的指数分布的具体情况,并推导出计算可信度指标的公式。数值计算说明了正确和错误决策的概率如何取决于精度参数。我们表明,当刺激信号的标准差增加时,假阳性和假阴性的概率增加得比真阳性和真阴性的概率下降得快得多。对于甚高频全向测距 (VOR) 接收器,我们证明即使刺激信号源产生的随机误差为零,假阳性和假阴性的概率也不为零。
Claire Sayers,1、2、3 Vikash Pandey,1、2 Arjun Balakrishnan,1、2 Katharine Michie,4 Dennis Svedberg,5、7 Mirjam Hunziker,1、2 Mercedes Pardo,6 Jyoti Choudhary,6 Ronnie Berntsson,5、7 和 Oliver Billker 1、2、8、* 1 瑞典分子感染医学实验室,于默奥大学,于默奥,瑞典 2 于默奥大学分子生物学系,于默奥,瑞典 3 新南威尔士大学生物医学学院,悉尼,新南威尔士州,澳大利亚 4 新南威尔士大学 Mark Wainwright 分析中心,悉尼,新南威尔士州,澳大利亚 5 于默奥大学医学生物化学和生物物理学系,于默奥,瑞典 6 癌症研究所研究,英国伦敦 Chester Beatty 实验室 7 瑞典于默奥大学瓦伦堡分子医学中心 8 主要联系人 *通信地址:oliver.billker@umu.se https://doi.org/10.1016/j.cels.2024.10.008
神经组织工程需要制造生物相容性支架,其化学和拓扑特性可以根据细胞功能和命运进行定制。[1–3] 具体来说,受生物启发的拓扑线索现已被广泛用作细胞指导材料,以调整细胞-材料界面处所需的细胞行为。[4–8] 其中,各向异性基质代表了一种有前途的工具,可用于开发适用于神经修复策略的支架。[9–14] 特别是,受细胞外环境中发现的纤维和原纤维的形状和几何形状的启发(例如,轴突束和延伸的神经突束),各向异性取向纤维成为决定神经突沿基质主轴排列和伸长以及促进神经元分化的理想候选者。[15–20]
本文提供了一种使用自动测试设备 (ATE) 评估下机航空电子系统健康监测可信度的方法。指标包括假阳性、假阴性、真阳性和真阴性的概率。我们首次考虑了刺激信号源 (SSS) 的不稳定性、测量通道误差的随机和系统分量以及系统本身的可靠性特性。我们考虑了永久性故障和间歇性故障的指数分布的具体情况,并推导出计算可信度指标的公式。数值计算说明了正确和错误决策的概率如何取决于精度参数。我们表明,当刺激信号的标准差增加时,假阳性和假阴性的概率增加得比真阳性和真阴性的概率下降得快得多。对于甚高频全向测距 (VOR) 接收器,我们证明即使刺激信号源产生的随机误差为零,假阳性和假阴性的概率也不为零。
本文提供了一种使用自动测试设备(ATE)评估下机航空电子系统健康监测可信度的方法。指标包括假阳性、假阴性、真阳性和真阴性的概率。我们首次考虑了刺激信号源(SSS)的不稳定性、测量通道误差的随机和系统分量以及系统本身的可靠性特性。我们考虑了永久性故障和间歇性故障的指数分布的具体情况,并推导出计算可信度指标的公式。数值计算说明了正确和错误决策的概率如何取决于精度参数。我们表明,当刺激信号的标准偏差增加时,假阳性和假阴性的概率增加得比真阳性和真阴性的概率下降得快得多。对于甚高频全向范围 (VOR) 接收器,我们证明即使刺激信号源产生的随机误差为零,假阳性和假阴性的概率也不同于零。
本文提供了一种使用自动测试设备 (ATE) 评估下机航空电子系统健康监测可信度的方法。指标包括假阳性、假阴性、真阳性和真阴性的概率。我们首次考虑了刺激信号源 (SSS) 的不稳定性、测量通道误差的随机和系统分量以及系统本身的可靠性特性。我们考虑了永久性故障和间歇性故障的指数分布的具体情况,并推导出计算可信度指标的公式。数值计算说明了正确和错误决策的概率如何取决于精度参数。我们表明,当刺激信号的标准差增加时,假阳性和假阴性的概率增加得比真阳性和真阴性的概率下降得快得多。对于甚高频全向测距 (VOR) 接收器,我们证明即使刺激信号源产生的随机误差为零,假阳性和假阴性的概率也不为零。
蛋白质磷酸化或去磷酸化是在所有生物体中发现的信号传递的重要机制。多年来,蛋白激酶和磷酸酶的性质被认为在原核生物和真核生物中是不同的。证明主要发生在组氨酸和天冬氨酸残基上,而相反,通常在丝氨酸,苏氨酸或酪氨酸残基上修饰真核蛋白。然而,近年来在细菌中报道了真核样蛋白激酶和磷酸酶,相反,在真核生物中发现了原核性蛋白质的ASP酶的同源物(有关评论,请参见[1-7])。这些研究表明,真核生物和原核生物可能具有所有类型的信号转导的相似机制。蛋白磷酸酶可以根据其酶特异性(即促磷酸酶和Tyr磷酸酶)分为两组[8,9]。ser} THR磷酸酶在ITRO中显示出广泛的特异性,并已分为四类:PP1,PP2A,PP2B和PP2C,根据保守的基序,它们对抑制剂和离子的抑制剂和离子需求的敏感性[9-11]。氨基酸序列比较表明PP1,PP2A和PP2B是同一PPP家族的成员[10]。PPP家族代表了较高的真核生物中蛋白质ser}的最大蛋白质ser} [12]。这些酶还与对称的折断氨酸四磷酸酶具有序列相似性[13]。被识别的PPP家族的第一个原核生物是噬菌体λ221的乘积[14]。目前,几个成员在ARCHEA和细菌中均已详细介绍[15-19]。但是,关于生理学的数据很少