摘要细菌性阴道病(BV)是女性再生产地段的多数菌感染。bv的特征在于通过包括众所周知的gardnerella daginalis在内的多种厌氧菌替代与健康相关的乳杆菌物种。prevotella timonensis和prevotella bivia是在大量BV患者中发现的厌食症,但它们对疾病过程的贡献仍有待确定。定义BV中厌氧过度生长的特征是粘膜表面的依从性,并且在阴道分泌物中粘液降解酶(例如唾液酸酶)的活性增加。我们证明了timonensis,但没有强烈粘附于阴道和宫颈细胞的水平与阴道G. g。Timonensis基因组独特地编码了大量粘液降解酶,包括四种假定的诱导酶和两个假定的唾液酸酶PTNANH1和PTNANH2。酶测定表明,岩藻糖苷酶和唾液酸酶的活性在结合细胞链球菌和分泌的馏分中明显高于其他阴道厌食症。在感染测定中,蒂莫宁SIS有效去除了来自上皮糖蛋白的岩藻糖和α2,3和α2,6和α2,6-链接的唾液酸部分。重组表达的timonensis nanh1和nanh2从上皮表面切割α2,3和α2,6-连接的唾液酸,而在抑制剂上可以阻止timonensis通过抑制剂来阻断唾液酸。我们的结果强调了了解不同厌氧菌在BV中的作用的重要性。这项研究表明,Timonensis具有不同的毒力相关特性,其中包括初始粘附和在阴道上皮粘膜表面粘蛋白降解的高能力。
背景:Kearns-Sayre综合征(KSS)是由线粒体DNA(MTDNA)的重复和/或缺失引起的,通常是基于经典的经典症状来诊断的,该症状经典的慢性渐进性外部外科治疗(CPEO)(CPEO)(CPEO),视网膜炎),年龄在20岁之前。本研究旨在诊断两名患者,以怀疑KSS。方法:其中一名患者经过了诊断性的奥德赛,在遗传上确定诊断之前,来自血液和肌肉的几个mtDNA分析的正常结果。结果:两名患者在脑脊液(CSF)中表现出增加的tau蛋白和低5-甲基四氢叶酸(5-mTHF)水平。在CSF样品上未靶向的代谢组学还显示出游离唾液酸和鞘磷脂C16:0(D18:1/C16:0)的水平,与四个对照组相比(与线粒体疾病,非注射型疾病,非骨骼疾病,低5-mthf,或增加5-mthf和tau蛋白相比, 。 结论:这是升高的鞘磷脂C16:0(D18:1/c16:0)和KSS中的Tau蛋白。 使用未靶向的代谢组学方法和标准实验室方法,该研究可以对KSS中的代谢有了新的启示,以更好地了解其复杂性。 此外,这些发现可能表明升高的游离唾液酸,鞘磷脂C16:0(D18:1/c16:0)和tau蛋白以及KSS诊断诊断中的新生物标志物的tau蛋白以及低5-mTHF。 ©2023作者。 由Elsevier Inc.出版 这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。。 结论:这是升高的鞘磷脂C16:0(D18:1/c16:0)和KSS中的Tau蛋白。 使用未靶向的代谢组学方法和标准实验室方法,该研究可以对KSS中的代谢有了新的启示,以更好地了解其复杂性。 此外,这些发现可能表明升高的游离唾液酸,鞘磷脂C16:0(D18:1/c16:0)和tau蛋白以及KSS诊断诊断中的新生物标志物的tau蛋白以及低5-mTHF。 ©2023作者。 由Elsevier Inc.出版 这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。。结论:这是升高的鞘磷脂C16:0(D18:1/c16:0)和KSS中的Tau蛋白。使用未靶向的代谢组学方法和标准实验室方法,该研究可以对KSS中的代谢有了新的启示,以更好地了解其复杂性。此外,这些发现可能表明升高的游离唾液酸,鞘磷脂C16:0(D18:1/c16:0)和tau蛋白以及KSS诊断诊断中的新生物标志物的tau蛋白以及低5-mTHF。©2023作者。由Elsevier Inc.出版这是CC下的开放访问文章(http://creativecommons.org/licenses/4.0/)。
寡糖(来自希腊语ὀλίγοςOlígos,“少数”和σάκχαρSácchar,“糖”)是糖(糖)聚合物,其中包含少量数量(通常为3-10个或更多)单糖(简单糖)。与大多数其他哺乳动物的牛奶不同,人乳是独特的,因为它含有高浓度的150多种不同且结构上不同的寡糖。实际上,对于5-15 g/L,成熟牛奶中的人牛奶寡糖(HMO)的总浓度通常超过人奶蛋白的总浓度,使HMOS成为仅次于简单的牛奶糖乳糖和脂质的第三大分子,而不是计算水[1]。HMO包含多达5个不同的构建块(单糖):葡萄糖(GLC),半乳糖(GAL),N-乙酰基葡萄糖胺(GLCNAC),Fucose(FUC)和唾液酸(SIA)。根据使用了哪些构建块以及如何将它们链接在一起[1],从而生成不同的HMO。图1a显示了HMO结构组件的蓝图。所有HMO在还原端携带乳糖(GALβ1-4GLC)。乳糖可以通过二糖乳糖-N-生物(GALβ1–3GLCNAC)或n-乙酰氨基胺(GALβ1-4GLCNAC)的添加来拉长。乳糖或细长链可以用唾液酸在α2-3-或α2-6-链接中修饰,在α1-2-,α1-3-或α1-3-或α1-4链接中进行葡萄糖基化,从而大大扩展了HMO结构组合的多样性。对于外部,每种唾液酸单糖都包含一个羧基,并引起对HMO分子的负电荷,从而改变了其结构特性。HMO结构通常决定其功能[2]。尽管HMO组成遵循基本的蓝图和150多个不同的HMO,但迄今已确定了150多个不同的HMO,但重要的是要注意,每个女性都合成并分泌出不同的HMO组成曲线,在不同女性之间有很大的不同(图1b),但在同一妇女的哺乳过程中保持相当恒定[3]。到目前为止,我们的实验室已经分析了从世界各地女性收集的10,000多个牛奶样本中的HMO组成,作为各种协作项目的一部分。图1C列出了主成分(PC)图中的某些数据,再次强调了女性之间的HMO组成图谱有所不同,但也存在明显的HMO剖面簇或HMO lactotypes。
摘要:人类唾液 - 酸性结合免疫球蛋白样凝集素-9(SIGLEC-9)是在几个免疫细胞上表达的糖免疫检查点受体。SIGLEC-9与含糖酸(唾液聚糖)的唾液酸的结合已充分记录,以调节其作为抑制受体的功能。在这里,我们首先使用良好的三维核磁共振(NMR)方法分配了SIGLEC-9 V-SET结构域(Siglec-9 D1)的氨基酸骨架。然后,我们将溶液NMR和分子动力学模拟方法结合在一起,以解释Siglec-9与天然配体α2,3和α2,62,6 siAllyl乳糖胺(SLN)(SLN)(SAIALYL LEWIS X(SALEX)(SALEX)和6-O硫的分子细节,并与两个固定型结合,并将其与两个固定型结合。正如预期的那样,在规范的唾液酸结合位点的F和Gβ链之间容纳了neu5ac。在NEU5AC的C9位置添加杂型支架9 N -5-(2-甲基噻唑-4-基)噻吩磺酰胺(MTTS)会产生与位于Siglec-9的N-末端区域的疏水性残基的新相互作用。同样,在neu5ac的C5位置添加芳族取代基(5- n-(1-二苯基 - 1 H-1 H- 1,2,3-三唑-4-基)甲基(BTC))稳定在SigleC-9中存在长长的B'-c loop的构象。这些结果暴露了负责SIGLEC-9对这两个改良的唾液聚糖的增强的亲和力和特异性的基本机制,并阐明了针对Siglec-9的下一代修改后的Sialoglycans的合理设计。■简介
摘要:人类唾液 - 酸性结合免疫球蛋白样凝集素-9(SIGLEC-9)是在几个免疫细胞上表达的糖免疫检查点受体。SIGLEC-9与含糖酸(唾液聚糖)的唾液酸的结合已充分记录,以调节其作为抑制受体的功能。在这里,我们首先使用良好的三维核磁共振(NMR)方法分配了SIGLEC-9 V-SET结构域(Siglec-9 D1)的氨基酸骨架。然后,我们将溶液NMR和分子动力学模拟方法结合在一起,以解释Siglec-9与天然配体α2,3和α2,62,6 siAllyl乳糖胺(SLN)(SLN)(SAIALYL LEWIS X(SALEX)(SALEX)和6-O硫的分子细节,并与两个固定型结合,并将其与两个固定型结合。正如预期的那样,在规范的唾液酸结合位点的F和Gβ链之间容纳了neu5ac。在NEU5AC的C9位置添加杂型支架9 N -5-(2-甲基噻唑-4-基)噻吩磺酰胺(MTTS)会产生与位于Siglec-9的N-末端区域的疏水性残基的新相互作用。同样,在neu5ac的C5位置添加芳族取代基(5- n-(1-二苯基 - 1 H-1 H- 1,2,3-三唑-4-基)甲基(BTC))稳定在SigleC-9中存在长长的B'-c loop的构象。这些结果暴露了负责SIGLEC-9对这两个改良的唾液聚糖的增强的亲和力和特异性的基本机制,并阐明了针对Siglec-9的下一代修改后的Sialoglycans的合理设计。■简介
牙本质生成始于成牙本质细胞,成牙本质细胞合成并分泌非胶原蛋白 (NCP) 和胶原蛋白。当牙本质受伤时,牙髓祖细胞/间充质干细胞 (MSC) 可以迁移到受伤区域,分化为成牙本质细胞并促进反应性牙本质的形成。牙髓祖细胞/MSC 分化在给定的生态位中受到控制。在牙齿 NCP 中,牙本质唾液酸磷蛋白 (DSPP) 是小整合素结合配体 N 连接糖蛋白 (SIBLING) 家族的成员,该家族的成员具有共同的生化特征,例如 Arg-Gly-Asp (RGD) 基序。DSPP 表达具有细胞和组织特异性,在成牙本质细胞和牙本质中高度常见。DSPP 突变会导致遗传性牙本质疾病。 DSPP 在蛋白水解作用下被催化成牙本质糖蛋白 (DGP)/唾液酸蛋白 (DSP) 和磷蛋白 (DPP)。DSP 进一步加工成活性分子。DPP 包含 RGD 基序和丰富的 Ser-Asp/Asp-Ser 重复区。DPP-RGD 基序与整合素 αVβ3 结合,并通过丝裂原活化蛋白激酶 (MAPK) 和粘着斑激酶 (FAK)-ERK 通路激活细胞内信号传导。与其他 SIBLING 蛋白不同,DPP 在某些物种中缺乏 RGD 基序。然而,DPP Ser-Asp/Asp-Ser 重复区与磷酸钙沉积物结合,并通过钙调蛋白依赖性蛋白激酶 II (CaMKII) 级联促进羟基磷灰石晶体生长和矿化。DSP 缺乏 RGD 位点,但含有信号肽。信号域的三肽与内质网内的货物受体相互作用,促进 DSPP 从内质网运输到细胞外基质。此外,DSP 的中间和 COOH 末端区域与细胞膜受体、整合素 β6 和闭合蛋白结合,诱导细胞分化。本综述可能揭示 DSPP 在牙发生过程中的作用。
nclisiran 是一种寡核苷酸,与三天线 N-乙酰半乳糖胺碳水化合物结合,有助于药物与肝脏肝细胞上表达的脱唾液酸辅蛋白受体结合。当 inclisiran 被肝细胞吸收后,inclisiran 会与 RNA 诱导沉默复合物 (RISC) 结合,这是一种核糖核蛋白复合物,主要在基因沉默和调控中发挥作用。单链 RNA 可作为 RISC 的模板,以确定适当的信使 RNA 补体。RISC 还可以激活核糖核酸酶 (RNase) 并切割目标 mRNA。2 将 inclisiran 掺入 RISC 会通过靶向切割 PCSK9 特异性 mRNA 来破坏 PCSK9 翻译。这种切割导致肝脏 PCSK9 产生减少,从而导致 LDL 受体增加
摘要 :靶向给药系统是肿瘤诊疗的有效方法,因其副作用小、疗效确切而受到广泛关注。叶酸受体在大多数癌细胞表面高表达,而在正常细胞表面低表达或不表达,且配体叶酸具有较高的亲和力,叶酸受体附着在药物载体上,可以靶向作用于癌细胞。本文介绍了叶酸和叶酸受体,简述了叶酸受体介导的靶向给药作用机制,讨论了叶酸偶联磁性纳米粒子、小分子叶酸的药物结合、叶酸受体结合蛋白、叶酸偶联多聚唾液酸四种叶酸-叶酸受体介导的肿瘤治疗进展,并分析了各治疗机制的优势点和未来发展趋势。
我们提出了一种新颖的数值方法,能够有效确定蛋白质表面各部分之间的互补关系。这种创新而通用的程序基于用 2D Zernike 多项式表示分子等电子密度表面,可以快速定量地评估相互作用蛋白质之间的几何形状互补性,而这在以前的方法中是无法实现的。我们首先用大量已知蛋白质复合物数据集测试了该方法,在结合位点的盲识别中获得了 0.76 的 ROC 曲线下总面积,然后将其应用于研究 SARS-CoV-2 的刺突蛋白与人类细胞受体之间相互作用的特征。我们的结果表明,SARS-CoV-2 使用了双重策略:除了已知的与血管紧张素转换酶 2 的相互作用外,其刺突蛋白还可以与上呼吸道细胞的唾液酸受体相互作用。
营养补充剂越来越多地生产并用于动物的营养益处,改善生理功能和增强健康[9,10]。例如,Li等人。[7]发现,用50 g l-citrulline补充Yili马的饮食增加了精氨酸和瓜氨酸的血浆浓度,从而改善了运动性能。可食用的鸟巢[EBN]是Swiftlet物种的唾液分泌物中的一种产品,是中国人中有价值的产品,由于其药物和营养特性,已被消耗了几个世纪,包括抗衰老,抗氧化,抗氧化,抗癌和抗炎[11,12]。EBN富含唾液酸(SA),它是一种具有代谢增强和抗氧化特性的生物成分,对马健康具有积极影响[12]。虽然营养补充剂通常用于增强赛马的健康和性能,但在阿拉伯种族种马中补充(EBN)补充的安全性和功效的研究有限,尤其是在减少运动引起的炎症和支持免疫功能方面。