目的:超高速撞击月球表面抛出的粒子在地球和月球之间形成一个环面。根据我们前期的研究,大约有2.3×10-4kg/s的粒子经过长期的轨道演化后撞击地球。我们主要关注这些地球撞击体,分析它们的轨道元素分布,并估计它们对地球观测的影响。方法:前期工作模拟了月球表面抛出的粒子的长期轨道演化,得到了它们在地月系统中的稳态空间分布。本文分析了地球撞击体的模拟结果,包括不同初始参数的撞击体占所有撞击体的比例、轨道元素分布以及粒子在几个地球观测站上的投射。结果:在一定的初始参数范围内,月球表面抛出的粒子更有可能撞击地球。大多数从月球抛射出的撞击体(约 70%)会在一年内到达地球,而大多数较小粒子(87.2% 的 0.2 µm 粒子和 64.6% 的 0.5 µm 粒子)会在一周内到达地球。根据轨道分布的差异,很大一部分从月球抛射出的地球撞击体可与行星际尘埃粒子区分开来。此外,从不同的地球观测站的角度来看,从月球抛射出的粒子可能呈现出不同的结构和方向。
热失控预防和延迟是电池组制造商在设计电池组时必须考虑的主要因素之一。如果电池组内的某个锂离子电池单元因穿孔、过度充电或制造缺陷而受损,它将释放气体和热量,损坏其他电池单元并可能导致热事件的连锁反应。一旦发生热失控事件,电池组内的压力会急剧增加,同时会有大量热气流从电池组中喷出。在电池组配置中加入通风口可以确保释放压力,防止电池爆炸。在发生灾难性故障的情况下,设计一条既定的热气排气路径可确保喷出的气体远离其他电池单元,最重要的是,远离客舱。
火箭的原理很简单:膨胀气体在各个方向上施加相同的压力。当弹道导弹燃烧时,会产生热气,这些热气会膨胀并对发动机管的边界施加压力。由于热气在所有方向上施加相同的压力,因此作用在侧壁上的压力会相互抵消;但是,作用在管子前向封闭端的压力不会被作用在尾端的压力抵消,因为尾端是部分闭合的。合力就是对发动机封闭前端的推力,因此火箭会朝那个方向推进。为了使气体的压力不会消耗得太快,并且推进剂可以保持在一定范围内,发动机管的尾端被喷嘴附件部分封闭,喷嘴附件会进入管子内部。该活塞不仅限制了热气体的喷出,而且通过其后部的一个倾斜表面,使猛烈膨胀的喷出气体可以作用于该倾斜表面,从而增加火箭的前推力。
冠状病毒是如何传播的?它似乎很容易在人与人之间传播,尤其是在家庭、医院和其他密闭空间中。病原体可以携带在咳嗽或打喷嚏时喷出的微小呼吸道飞沫中。当我们接触受污染的表面然后触摸我们的脸时,它也可能会传播。
TR 是电池系统最危险的安全隐患。TR 始于电池产生过多的热量,而这些热量无法充分消散,从而导致电极和电解质材料发生一系列放热反应。4 这些反应会产生气体,从而给电池加压。高温和高压共同作用,经常会导致电池外壳爆裂,5 导致热固体、熔融金属、蒸汽和剧毒气体剧烈喷出。6,7 此外,可燃喷出物(如 H 2 气体和蒸发的有机物)可能着火,从而加剧能量释放。8,9 电池化学成分、9 材料数量、充电状态 (SOC) 10 和老化历史 11 在很大程度上决定了 TR 期间释放的能量和材料。因此,虽然更高容量的化学成分和更高的电池电压会增加电池组的能量密度,但它们也会降低 TR 起始温度,从而增加能量释放。 6,8,9,12 挤压、穿透和外部短路都可能引发 TR,13-17 通常会导致多个电池同时进入 TR。此类事件非常复杂,难以缓解,通常需要有关电池环境的信息(例如,电池在电动汽车内的位置)才能设计出足够的安全措施。另一方面,单电池 TR 可以在电池组级别进行管理。
增材制造 (AM) 的接受度取决于最终零件的质量和工艺的可重复性。最近,许多研究致力于建立工艺行为与材料性能之间的关系。诸如激光-材料相互作用、熔池动力学、喷出物形成和粉末床上的粒子运动行为等现象是 AM 社区特别感兴趣的,因为这些事件直接影响工艺的结果。阻碍 AM 采用的另一个方面是需要具有成本效益的粉末材料及其可持续的加工和回收。
封面照片:艺术气息十足的 F-1 发动机喷射板,这款发动机是阿波罗任务中土星五号火箭的主要动力,除其他升力外,还为它提供动力。液体燃料和液氧会从喷射板的孔中喷出,就像花园软管头喷出的水一样,但压力巨大。这台特殊的 F-1 发动机在阿拉巴马州亨茨维尔的美国太空和火箭中心展出。1958 年 8 月,即 ARPA(后来更名为 DARPA)成立仅六个月后,该机构批准了亨茨维尔陆军弹道导弹局的 Wernher von Braun 及其研究团队提出的设计和建造大型重型火箭运载器的提案。为了在第一阶段快速且廉价地实现巨大推力,ARPA 建议采用一组现有火箭发动机的设计,即 Rocketdyne 在 20 世纪 50 年代中期开发的强大 F-1。加速土星助推器成功开发的另一个原因是,上级依赖于早期为 ARPA 支持的 CENTAUR 飞行器开发的液氢技术。随着 DARPA 进入第七个十年,该机构仍然处于火箭设计的前沿,目前专注于快速、低调、低成本地将资产送入轨道的挑战。照片由 Lee Hutchinson 拍摄
背景。微粒形式的水冰是彗星中最常见的挥发性物质,在正确模拟彗星活动之前,必须了解其接近太阳时的行为。目的。为了评估颗粒状水冰的特性,我们研究了其在低温高真空环境中光照下的演变。方法。我们制作了一个由微米级颗粒组成的水冰样本,将其放置在热真空室内,并将其暴露在高强度可见光/近红外 (VIS / NIR) 照明下。由于冰的 NIR 波段内的能量吸收,样品局部加热,导致靠近表面的蒸发。使用秤测量辐照样品的总质量损失,并用红外摄像机记录表面温度。此外,我们使用多台摄像机观察表面变化和喷射出的固体颗粒。结果。我们从空间分辨的表面温度中推导出由于水冰升华而造成的质量损失。这种质量损失占总质量损失的 68%-77%。剩余部分(23% 到 32% 之间)的质量以固体颗粒的形式喷出,可以用肉眼看到。结论。水冰颗粒的自我喷出可以用一个几何模型来解释,该模型描述了样品冰成分的升华,同时考虑了水冰颗粒的尺寸分布和样品的体积填充因子 (VFF)。根据该模型,当固体冰颗粒(或它们所属的颗粒簇)由于较小的连接冰颗粒蒸发速度更快而与样品失去接触时,就会发射固体冰颗粒。我们讨论了该过程与彗星尘埃活动的可能相关性。
风扇将大量空气加速到相对较低的速度。这部分空气流的一部分直接进入旁通管道。这是旁通气流“二次流”。另一部分(“一次流”)的压力在进入燃烧室之前通过 HP 压缩机增加。在燃烧室中,燃料/空气混合物点燃并通过涡轮部分膨胀。HP 涡轮提取能量以通过锥齿轮驱动 HP 压缩机和附件变速箱。LP 涡轮提取能量以驱动风扇。一次流继续通过排气混合器加速并与二次流混合。然后,气流通过喷嘴喷出。发动机推力是根据指令的 N1(LP 轴速度)实现的。