1 智利天主教大学物理学院天体物理研究所,Casilla 306,Santiago 22,智利 电子邮件:gventuri@astro.puc.cl 2 INAF-Arcetri 天体物理天文台,Largo E. Fermi 5,50125 Florence,意大利 电子邮件:giacomo.venturi@inaf.it 3 佛罗伦萨大学物理与天文系,Via G. Sansone 1,50019 Sesto Fiorentino,佛罗伦萨,意大利 4 空间望远镜科学研究所,3700 San Martin Drive,Baltimore,MD 21218,美国 5 高等师范学校,Piazza dei Cavalieri 7,56126 Pisa,意大利 6 剑桥大学卡文迪什实验室,19 JJ Thomson Ave.,剑桥 CB3 0HE,英国 7 剑桥大学卡夫利宇宙学研究所,剑桥 Madingley Road CB3 0HA,英国 8 伦敦大学学院物理与天文系,伦敦 WC1E 6BT 高尔街,英国 9 天体生物学中心(CSIC-INTA),天体物理学系。 de Ajalvir Km. 4, 28850 Torrejón de Ardoz,马德里,西班牙 10 悉尼天文研究所,悉尼大学物理学院,悉尼,新南威尔士州 2006,澳大利亚 11 ARC 三维全天空天体物理学卓越中心(ASTRO-3D),堪培拉 ACT2611,澳大利亚 12 巴克内尔大学物理与天文系,刘易斯堡,宾夕法尼亚州 17837,美国
扩散模型在图像生成方面表现出色,但它们的计算量大且训练耗时。在本文中,我们介绍了一种新型扩散模型,该模型受益于量子计算技术,可以减轻计算挑战并提高高能物理数据的生成性能。全量子扩散模型在前向过程中用随机酉矩阵取代高斯噪声,并在去噪架构的 U-Net 中引入变分量子电路。我们对来自大型强子对撞机的结构复杂的夸克和胶子喷流数据集进行了评估。结果表明,全量子和混合模型在喷流生成方面可与类似的经典模型相媲美,凸显了使用量子技术解决机器学习问题的潜力。
通知 本报告由美国政府机构资助,作为对工作的一个说明。美国政府及其任何机构或其任何雇员均不对所披露的任何信息、设备、产品或流程的准确性、完整性或实用性做任何明示或暗示的保证,也不承担任何法律责任或义务,也不表示其使用不会侵犯私有权利。本文以商品名、商标、制造商或其他方式提及任何特定的商业产品、流程或服务并不一定构成或暗示美国政府或其任何机构对其的认可、推荐或偏袒。本文表达的作者观点和意见不一定代表或反映美国政府或其任何机构的观点和意见。电子版可在 http://www.osti.gov/bridge 获取。纸质版可在以下地址获取:美国能源部科学技术信息办公室 P.O. Box 62 Oak Ridge, TN 37831-0062 电话:865.576.8401 传真:865.576.5728 电子邮件:reports@adonis.osti.gov 以纸质形式向公众出售,地址:美国商务部国家技术信息服务 5285 Port Royal Road Springfield, VA 22161 电话:800.553.6847 传真:703.605.6900 电子邮件:orders@ntis.fedworld.gov 在线订购:http://www.ntis.gov/ordering.htm 印刷版
伽马射线爆发喷流的命运和可观测特性主要取决于它们与围绕中央引擎的前身物质的相互作用。我们提出了这种相互作用的半解析模型(该模型建立在之前的几项解析和数值工作的基础上),旨在根据周围物质和发射时喷流的特性,预测爆发后喷流和茧能量以及洛伦兹因子的角度分布。利用该模型,我们构建了合成的结构化喷流群,假设前身是坍缩星(用于长伽马射线爆发 - LGRB)或双中子星合并(用于短伽马射线爆发 - SGRB)。我们假设所有前身都是相同的,并且我们允许发射时喷流特性几乎没有变化:因此我们的群体具有准通用结构。这些群体能够重现观测到的 LGRB 和 SGRB 光度函数的主要特征,尽管仍有几个不确定性和注意事项需要解决。我们向公众开放我们的模拟人口。
背景。河外等离子体喷流是少数能够限制超高能宇宙射线的天体物理环境之一,但它们是否能够加速这些粒子尚不清楚。目的。在这项工作中,我们通过考虑喷流的整体横向结构,重新审视了超出局部均匀场近似的相对论磁化冲击下的粒子加速。方法。使用相对论电子离子等离子体喷流的大型二维粒子模拟,我们表明在与周围介质的界面处形成的终止冲击将粒子加速到限制极限。结果。喷流磁场的径向结构导致相对论速度剪切,从而激发下游介质中的冯·卡门涡街,该涡街尾随充满宇宙射线的过压气泡。粒子在每次穿过剪切流边界层时都会得到有效加速。结论。这些发现支持了河外等离子体喷流可能能够产生超高能宇宙射线的观点。这种极端粒子加速机制也可能适用于微类星体喷流。
背景。对日冕中重联喷流的观测正在成为研究难以捉摸的日冕加热的一种可能的诊断方法。这种喷流,特别是被称为纳米喷流的喷流,可以在日冕环中观察到,并且与纳米耀斑有关。然而,虽然模型成功地描述了导致喷流的双侧重联后磁弹弓效应,但观测表明纳米喷流是单向的或高度不对称的,只有相对于日冕环曲率向内移动的喷流才能清晰地观察到。目的。这项工作的目的是解决日冕环曲率在非对称重联喷流的产生和演化中的作用。方法。我们首先使用一个简化的分析模型,在该模型中,我们根据重联前磁场线与其重联后缩回长度之间的局部交叉角来估算重联后的张力,以达到新的平衡。其次,我们使用一个简化的数值磁流体动力学 (MHD) 模型来研究两个相反传播的喷流如何在弯曲的磁场线中演变。结果。通过我们的分析模型,我们证明了在重联后重组的磁场中,向内的磁张力本质上比向外的磁张力强(高达三个数量级),并且当缩回长度足够大时,存在一个向外的张力消失的状态,导致在可观测的大尺度上没有向外的喷流。我们的 MHD 数值模型为这些结果提供了支持,并且还证明在随后的时间演化中,向内的喷流始终更具能量。还发现小角度重联和更局部的重联区域的不对称程度会增加。结论。这项研究表明,日冕环的曲率在重联喷流的不对称性中起着重要作用,向内的喷流比相应的向外的喷流更容易发生,而且能量也更高。
QCD 喷流是提取有关超相对论重离子碰撞后产生的夸克胶子等离子体信息的最佳途径之一。喷流的结构由多粒子量子干涉决定,很难用微扰法处理。当喷流在 QCD 介质中演化时,这种干涉图案会被修改,从而增加了另一层复杂性。通过利用量子技术的最新发展,可以通过直接量子模拟喷流演化来更好地理解这种影响。在这项工作中,我们引入了此类模拟的前身。基于光前哈密顿形式,我们构建了一个数字量子电路,可在随机颜色背景下跟踪单个硬探针的演化。就喷流淬灭参数 ˆ q 而言,使用理想量子计算机的经典模拟器获得的结果与已知的分析结果一致。通过这项研究,我们希望为未来使用量子计算机进行介质内喷流物理研究奠定基础。
激波是自然界最强大的粒子加速器之一,与相对论电子加速和宇宙射线有关。上游激波观测包括波的产生、波粒相互作用和磁压缩结构,而在激波和下游,可以观察到粒子加速、磁重联和等离子体喷流。在这里,我们使用磁层多尺度 (MMS) 展示了在地球弓形激波处产生的高速下游流动(喷流)的现场证据,这是激波重新形成的直接结果。由于上游等离子体波演化和弓形激波持续重新形成周期的综合作用,在下游观察到了喷流。这一产生过程也适用于通常存在无碰撞激波的行星和天体物理等离子体。