摘要 本文提出了一种用于航天应用的抗辐射极性设计 14T (RHPD-14T) SRAM 单元。通过估算 65 纳米互补金属氧化物半导体 (CMOS) 技术的各种设计指标,分析了所提出的 RHPD-14T 单元的性能。基于结合抗辐射极性设计技术与合理的布局拓扑,所提出的 RHPD-14T 可以耐受所有单节点翻转和部分双节点翻转。仿真结果表明,RHPD-14T 的写入访问时间比 RSP-14T/QUCCE-10T/DICE/S4P8N/We-Quatro(@VDD=1.2V) 短 1.83 倍 / 1.59 倍 / 1.56 倍 / 1.12 倍 / 1.05 倍。 RHPD-14T的字线写触发电压比QUCCE-10T/DICE/We-Quatro/S4P8N/RSP-14T (@VDD=1.2V)高2.67×/2.22×/1.35×/1.29×/1.26×;RHPD-14T的保持静态噪声容限比DICE/S4P8N/RHPD-12T (@VDD=1.2 V)高14.85×/7.15×/1.05×。此外,蒙特卡洛(MC)模拟证明RHPD-14T波动性小、稳定性强、恢复能力稳定、抗单效应翻转(SEU)能力强。关键词:保持静态噪声容限、极性设计抗辐射、单效应翻转分类:集成电路
结合卓越的光耦合技术,该调制器可提供高噪声容限和出色的隔离模式瞬变免疫力。ACPL-C797 的最小绝缘距离 (DTI) 为 0.5 毫米,可提供可靠的增强绝缘和高工作绝缘电压,适用于故障安全设计。这种出色的隔离性能优于其他替代方案,包括基于电容或磁耦合且 DTI 在微米范围内的设备。采用拉伸 SO-8 (SSO-8) 封装,与传统电流传感器相比,隔离式 ADC 可提供可靠性、小尺寸、卓越隔离和过热性能,电机驱动设计人员需要以低得多的价格准确测量电流。
1. 数字系统基础:布尔代数、数字系统中使用的数字系统和代码、逻辑门及其特性、真值表。2. 组合电路的分析与综合:简化技术、无关项、卡诺图。大规模电路的实现。静态和动态风险。3. 数字集成电路:数字 IC 系列:TTL、CMOS、基本逻辑门结构(TTL、CMOS、NMOS、PMOS、传输门逻辑、线与逻辑)、输入和输出 VI 特性;传输特性、开关阈值、噪声容限、逻辑门的功率耗散、传播延迟、上升时间、下降时间。时序电路:触发器的典型结构、操作、设计和应用。同步时序电路的设计和分析;状态和状态变量:寄存器、计数器和存储器单元(ROM、RAM、Flash、可编程逻辑阵列、FPGA)的结构。异步电路的设计、状态机、流表、稳定和非稳定状态。
由于 CMOS 的缩放,这些设备的局限性引发了对替代纳米设备的需求。提出了各种设备,如 FinFET、TFET、CNTFET。其中,FinFET 成为最有前途的设备之一,由于其在纳米范围内的低泄漏,它可以替代 CMOS。如今,电子设备在电池消耗方面更加紧凑和高效。由于 CMOS 的缩放限制,CMOS SRAM 已被 FinFET SRAM 取代。已经有两个 FinFET SRAM 单元,它们具有高功率效率和高稳定性。已经对这些单元进行了性能比较,以分析泄漏功率和静态噪声容限。这些单元的模拟是在 20 nm FinFET 技术下进行的。经分析,改进的 9T SRAM 单元的写入裕度实现了 1.49 倍的改进。读取裕度也显示出比本文中比较的现有单元有显著的改善。对于所提出的 0.4 V SRAM 单元,发现保持裕度更好。栅极长度已经改变,以发现栅极长度对读取裕度的影响。
摘要:本文提出了一种具有单端特性的 6T 单元,以提高稳定性、降低能耗、降低漏电功率。该单元与规格优良的 10 和 12 晶体管结构进行了比较。然而,上述结构设计为具有最佳参数,尺寸小,晶体管数量最少,从而减小了单元尺寸。在某些参数方面,例如写入噪声容限,该结构与其他结构相比具有最佳优点,甚至高于 12 和 10 晶体管的结构。通过切断要写入为“1”的存储节点的下拉路径来增强写入操作;读取操作无需切断下拉路径即可执行。在 VDD=0.4V 时,与传统的 6T 相比,所提出的结构的静态功率、读取容限、写入容限、读取能量和写入能量分别优越 33%、50%、215%、9% 和 5%。与标准 6T 结构相比,电气质量指标 (EQM) 参数提高了约十倍,表明新结构的价值已经得到体现。对 32nm 技术中 5,000 次读写产量的蒙特卡洛模拟表明,我们的单元产量比典型的 6T 单元高出 2 倍和 3.4 倍。因此,对于需要低能耗和高稳健性的应用,建议的 6T 单元是一个合适的选择。
印度专利局已授予印多尔理工学院“PN 调谐差分 8T 静态随机存取存储器 (SRAM) 单元”专利。本发明一般涉及集成电路,更具体地说涉及超低功耗 SRAM。为了降低存储器单元阵列的功耗,电源电压缩放是最优选的方式。电源电压缩放使操作能够在亚阈值范围内进行,其中电路的功耗最小。这是通过选择低于所用金属氧化物半导体场效应晶体管 (MOSFET) 器件的阈值电压的电源电压来实现的。通过 VLSI 设计进行电源电压缩放会受到诸如静态噪声容限 (SNM) 的明显损失、电流波动、限制可能连接到单个位线的单元数量等限制。本发明减少了读取干扰并提高了 SRAM 单元的写入能力,从而在超低功耗操作中更有效地操作 SRAM 单元。本发明还增强了 SRAM 单元在亚阈值区域内对工艺电压温度变化的免疫力。这是通过切断反馈并限制通过真实存储节点到地的电流来实现的,从而提高了 8T SRAM 单元的写入能力和写入速度,允许设置公共写入脉冲宽度,从而提高写入速度。读取操作期间对真实存储节点没有直接干扰,从而降低了芯片间或芯片内变化导致的故障概率。这种新型 SRAM 单元将使设计人员能够构建强大的内存阵列。