摘要 我们研究了量子纠错对相干噪声的有效性。相干误差(例如,单位噪声)可以相互干扰,因此在某些情况下,受相干误差影响的量子电路的平均不保真度可能会随着电路大小的增加而二次增加;相反,当误差不相干(例如,去极化噪声)时,平均不保真度在最坏的情况下会随着电路大小线性增加。我们考虑了量子稳定器代码对噪声模型的性能,在该模型中,对每个量子位应用单位旋转,其中所有量子位的旋转轴和旋转角度几乎相同。特别是,我们表明,对于受这种独立相干噪声影响的环面代码和最小权重解码,只要噪声强度与代码距离成反比衰减,纠错后的逻辑通道会随着代码长度的增加而变得越来越不相干。对于弱相关相干噪声,也有类似的结论。我们的方法还可用于分析其他代码和容错协议对相干噪声的性能。然而,我们的结果并未表明,在噪声强度随代码块增长而保持不变的更物理相关情况下,逻辑通道的相干性会受到抑制,并且我们重述了阻止我们将结果扩展到这种情况的困难。尽管如此,我们的工作支持了容错量子计算方案将有效对抗相干噪声的想法,为担心控制误差和与环境的相干相互作用的破坏性影响的量子硬件制造商提供了令人鼓舞的消息。
频率依赖性可塑性是指响应不同刺激频率时突触强度的变化。共振是已知在这种频率依赖性中很重要的一个因素,然而,神经噪声在此过程中的作用仍然难以捉摸。考虑到大脑是一个固有的噪声系统,了解其影响可能有助于制定基于非侵入性脑刺激方案的治疗干预措施。威尔逊-考恩 (WC) 模型是一个成熟的模型,用于描述神经群体的平均动态,并且已被证明在存在噪声的情况下表现出双稳态。然而,当皮质群体相互作用时,WC 模型中的不同稳定状态如何影响突触可塑性这一重要问题尚未得到解决。因此,我们研究了基于 WC 的相互作用神经群体与活动依赖性突触耦合模型中的可塑性动力学,其中在受控强度的噪声存在下施加了周期性刺激。结果表明,对于噪声方差的窄范围,突触强度可以得到优化。具体来说,存在一种噪声强度机制,突触强度呈现三重稳定状态。调节噪声强度会影响系统选择其中一种稳定状态的概率,从而控制可塑性。这些结果表明,噪声是决定刺激引起的可塑性结果的一个高度影响因素。
在这项工作中,我们表明,通过利用连续量子非破坏性测量,即使在存在独立的失相噪声(通常是最有害的噪声类型)的情况下,也可以在频率估计(或磁力测量)测量方案中保留量子优势。因此,我们验证了这种增强是由于非经典关联(即自旋压缩)而得以保留的,这些关联是由测量本身动态产生的。值得注意的是,我们的方案不需要准备任何纠缠或非经典关联的探针状态:探针在经典相干自旋状态中初始化,量子增强所需的资源在条件演化过程中动态创建。此外,我们提供了证据,证明我们的结果是稳健的,并且在各种噪声强度下甚至在存在低效测量设备的情况下都适用。
摘要:煤矿噪声影响人的生理、心理和行为,导致工作失误,增加事故发生率。本研究构建了煤矿噪声模拟实验系统,系统不仅包括实验环境模拟系统和生理指标测试系统,还增加了矿工工作模拟系统。研究不同短时(25 min)噪声水平(60 dB、70 dB、80 dB、90 dB、100 dB)对人体生理(皮肤电导率和心率)的影响。分析表明,噪声强度越强,生理指标出现明显变化的接触时间越短,通过设置不同的噪声并测量人体的皮肤电导率和心率,得出应将噪声水平降至90 dB以减少矿工事故的结论。
光场的四波混频 (FWM) 已广泛应用于量子信息处理、传感和存储。它还构成了非线性光谱的基础,例如瞬态光栅、受激拉曼和光子回波,其中相位匹配用于选择物质三阶响应的所需分量。在这里,我们报告了一项实验研究,研究了由 FWM 在热 Rb 蒸汽中产生的一对压缩光束的二维量子噪声强度差谱。该测量揭示了由强泵浦场引起的 AC 斯塔克位移所修饰的 χ (3) 磁化率的细节,与经典的探测和共轭光束强度测量相比具有更高的光谱分辨率。我们展示了如何利用压缩光的量子关联作为光谱工具,与经典工具不同,它对外部噪声具有鲁棒性。
使用传感器的量子性能,可以增强成像,光谱和检测的分辨率,精度和灵敏度。一个有趣的问题是:传感器和目标的量子性质(量子)是否可以利用为实现经典探针或经典目标不可能的方案?在这里我们表明,量子目标的量子相关性的测量确实可以传达没有经典对应物的方案。作为一个具体的例子,如果量子目标的二阶经典相关性可以通过非平稳的经典噪声完全掩盖,则高阶量子相关性可以从经典噪声背景中单次量子目标,无论噪声的频谱,统计量或噪声强度如何。因此,提出了一种经典的无噪声感应方案。这一发现表明,仍将探索传感器和目标的量子性,以实现量子传感的全部潜力。新机会包括超越经典方法的敏感性,非古典相关性作为量子多体物理学的新方法,量子基础的无漏洞测试等。
许多量子力学实验可以看作是已知量子电路和未知量子过程之间的多轮交互协议。众所周知,与仅允许非相干访问相比,对未知过程的完全量子“相干”访问在许多鉴别任务中具有优势,但目前尚不清楚当过程嘈杂时这种优势是否会持续存在。在这里,我们表明,在区分两个嘈杂的单量子比特旋转通道时可以保持量子优势。数值和分析计算表明,完全相干和完全非相干协议的性能与噪声强度之间存在明显的转变。此外,相干量子优势区域的大小在通道使用次数上呈逆多项式缩小,在中间状态下,改进的策略是完全相干和完全非相干子程序的混合。完全相干协议基于量子信号处理,为在存在实际噪声的情况下研究量子优势提出了一个可推广的算法框架。