固态自旋缺陷,尤其是具有可能可实现的长相干时间的核自旋,是量子记忆和传感器的诱人候选者。但是,由于其内在四极杆和超细相互作用的变化,它们的当前性能仍然受到限制。我们提出了一个不平衡的回声来克服这一挑战,通过使用第二个自旋来重新调整这些相互作用的变化,同时保留存储在核自旋进化中的量子信息。不平衡的回声可用于探测材料中的温度和应变分布。我们开发了第一个原理方法来预测这些相互作用的变化,并揭示了它们在大温度和应变范围内的相关性。在钻石中大约10 10个核自旋中进行的实验表明,增加了20倍的去态时间,受到其他噪声源的限制。我们进一步表明,与实验中的相比,我们的方法可以重新调整更强的噪声变化。
当光子撞击平衡分束器时,会获得单光子最大纠缠态。其非局部性质在量子光学和基础界引起了激烈的争论。然而,很明显,仅由无源光学元件制成的标准贝尔测试无法揭示这种状态的非局部性。我们表明,单光子纠缠态的非局部性仍然可以在仅由分束器和光电探测器组成的量子网络中揭示。在我们的协议中,三个单光子纠缠态分布在一个三角形网络中,在光子路径中引入了不确定性,并创建了非局部相关性,而无需进行测量选择。我们讨论了一个具体的实验实现,并提供了我们的协议对标准噪声源耐受性的数值证据。我们的结果表明,单光子纠缠可能是一种有希望的解决方案,可以生成真正的网络非局部相关性,可用于基于贝尔的量子信息协议。
dc artring在PV字符串的电缆电缆中引起交流噪声电流,该电缆以多个MHz的范围中存在。太阳能中DC ARC检测的挑战是以可靠的方式检测PV电缆内噪声的增加,而不会引起错误的警报和关闭。要达到这种能力,需要一个低噪声,高性能的模拟前端,因为ARC的注射AC噪声可以坐落在DC String电流顶部的几mA范围内,该电弧的范围内,该电弧的范围在住宅应用中的20A范围内,甚至在商业太阳能应用中甚至更高。此外,太阳系中还有其他几种噪声来源,这些噪声无法错误地解释为弧。这些其他噪声源的示例是PV电缆上逆变器或电源线通信的开关频率。传统上,算法用于识别测得电流中的弧形特征。要实现可靠的弧检测,这些算法通常需要对每个系统进行微调,因为电弧签名高度依赖于系统。
最先进的固态量子处理器的主要局限性之一是由于表面上的吸附物,界面上的杂质和材料缺陷引起的噪声而引起的量子降压和放松。要使领域迈向全断层量子计算,需要更好地了解这些显微镜噪声源。在这里,我们使用超高的真空包装来研究真空负载,紫外线照射和离子辐照处理对放松和相干时间的影响,以及缓慢的参数频率的频率频率浮动,可调节的超导超导转移速度。所研究的处理不会显着影响弛豫率γ1和回声衰减率γe 2; SS处于最佳位置,除了减少γ1的NE离子轰击。相比之下,通过从紫外线和NH 3处理的芯片表面中去除磁吸附物,可以改善漏噪声参数。此外,我们证明了SF 6离子轰击可用于原位调节量子频率,而在固定后进行了轰炸,而不会在最佳位置影响量子放松和相干时间。
是由于湍流与固体表面的相互作用所致,重要的是要将湍流涡流到一定程度上,并进一步保留那些从转子叶片中脱离的湍流涡流至少至下游叶片,以实现准确的风扇宽带噪声预测。不幸的是,所谓的冲击捕捉方案被发现太扩散了,无法解决和保留这些动荡的涡流,而它们能够比中央方案更好地处理冲击。为了利用中央和前风方法,这种SBIR的工作将采用气体弛豫方法,在这种方法中,放松参数用于最大程度地减少上风方法中固有的数值耗散与亚网格级尺度(SGS)模型之间的差异。作为一项可行性研究,NASA 22-IN FAN噪声源诊断测试(SDT)案例将在I期使用,以证明所提出方法的能力准确预测风扇宽带噪声。因此,进一步完善方法并开发用于II阶段商业化的计算软件工具是有意义的。
广义振幅阻尼通道 (GADC) 是基于超导电路的量子计算中的噪声源之一。它可以被视为玻色子热通道的量子比特类似物,因此可用于在低温系统存在背景噪声的情况下对有损过程进行建模。在这项工作中,我们对 GADC 进行了信息论研究。我们首先确定 GADC 纠缠破坏的参数范围以及可抗降解的范围。然后,我们为其经典、量子和私有容量建立了几个上限。这些界限基于数据处理不等式和信息论量的均匀连续性以及其他技术。我们对 GADC 量子容量的上限比最近在 [Rosati et al ., Nat. Commun. 9, 4339 (2018)] 中报道的 GADC 整个参数范围的已知上限更严格,从而缩小了下限和上限之间的差距。我们还建立了 GADC 的双向辅助量子和私有容量的上限。这些界限基于压缩纠缠,并通过构建特定的压缩通道来建立。我们将这些界限与最大 Rains 信息界限、互信息界限和另一个基于近似协方差的界限进行比较。对于所有考虑的容量,我们发现各种技术都可用于建立界限。
在多个量子位上表现出显着的时间和空间相关性的噪声可能对易于断层的量子计算和量子增强的计量学尤其有害。然而,到目前为止,尚未报道对即使是两数量子系统的噪声环境的完整频谱表征。我们提出并在实验上证明了基于连续控制调制的两量偏角噪声光谱的方案。通过将自旋锁定松弛度的思想与统计动机的稳健估计方法相结合,我们的协议允许同时重建所有单量和两倍的互相关光谱,包括访问其独特的非分类特征。仅采用单一QUIT控制操作和状态训练测量,而不需要纠缠状态的准备或读取两量点的可观察物。我们的实验演示使用了两个与共享的彩色工程噪声源相连的超导码位,但我们的方法可移植到各种dephasing主导的Qubit架构上。通过将量子噪声光谱推向单量环境,我们的工作预示着工程和自然发生的噪声环境中时空相关的特征。
TFP401/401A 从 DVI 发送器接收时钟参考,其周期等于像素时间 t pix 。此时钟的频率也称为像素速率。由于 Rx[2:0] 上的 TMDS 编码数据每 8 位像素包含 10 位,因此 Rx[2:0] 串行比特率为像素速率的 10 倍。例如,支持刷新率为 60 Hz 的 UXGA 分辨率所需的像素速率为 165 MHz。TMDS 串行比特率为像素速率的 10 倍,即 1.65 Gb/s。由于此高速数字比特流在长距离(3-5 米)的三个独立通道(或双绞线)上传输,因此无法保证数据流与输入参考时钟之间的相位同步。此外,三个数据通道之间通常存在偏差。TFP401/401A 对输入数据流采用 4 倍过采样方案,以实现可靠的同步,通道间偏差容差高达 1-t pix。由于反射和外部噪声源导致时钟和数据线上的累积抖动也是高速串行数据传输的典型特征;因此,TFP401/401A 设计具有高抖动容差。
摘要在单个光子激光雷(SPL)中,激光重复率设置了可以明确恢复的最大距离。常规SPL通过降低重复率来扩展此最大记录深度;但是,较慢的采集速度限制了接收到的光子的数量,这可能是不可能跟踪快速移动对象的。受到Modulo感测成功的启发,我们利用了典型轨迹的平滑度,以实现超出明确范围的远程跟踪。尽管SPL自然地获得了模量时间的测量时间,但它引入了几个挑战,包括随机抽样时间,多个噪声源和绝对距离不确定性 - 当前的模型传感文献无法解决这些挑战。因此,我们提出了一种直接在模量样品上运行的插值和denoising方法。我们基于变化的反射性降落性进一步消除了绝对距离。蒙特卡洛模拟考虑了实际条件下的逼真的轨迹,表明,如果适当地解开,我们的深度估算的归一化平方误差估计,相对于重复期会导致不模棱两可的激光雷达设置,我们的深度估计值降低了20 dB以上。
表格和图表 表 1.1 一些主要海底噪声源的比较 3 表 1.2 声音对海洋环境的潜在影响 7 表 1.3 与海军或地震活动同时发生的大规模搁浅 8 表 2.1 海洋噪声缓解措施 19 表 2.2 北约成员国使用或开发的主动声纳系统 22 表 2.3 2002 年 1 月至 2005 年 2 月世界各地的地震勘探 31 表 4.1 与海洋噪声相关的国际公约、协定和条约 56 图 2.1 美国海岸外的海军综合设施 27 图 2.2 全球海上地震勘探热点(2002 年 1 月至 2005 年 2 月) 29 图 2.3 墨西哥湾未来地震勘测预测 32 图 2.4美国墨西哥湾地震勘测区域按船员数量划分(2002 年 1 月 - 2005 年 2 月) 33 图 2.5 欧洲地震勘测区域按船员数量划分(2002 年 1 月 - 2005 年 2 月) 34 图 2.6 北美水域国际航道 37