1990 年,美国联邦航空局颁布了噪声筛查程序,用于确定在高于地面 (AGL) 3,000 英尺或以上的空域活动是否会导致 DNL 水平升高至 5 dB 或更高。根据美国联邦航空局的经验,如果 DNL 水平升高至 5 dB 或更高,而累积水平远低于 65 dB,则可能会对人们造成干扰并引起公众关注。在扩展东海岸计划 (EECP) 的环境影响声明 (EIS) 中,美国联邦航空局对低至 45 dB DNL 水平的噪声水平进行了评估,以确定 DNL 噪声暴露可能升高 5 dB 或更高。在 EECP 研究中,美国联邦航空局确定 45 dB DNL 水平是需要考虑噪声的最低水平,因为“即使是遥远的环境噪声源和自然声音(例如树间风声)也可能轻易超过这个 [DNL 45 dB] 值。” 2 随后,芝加哥航站楼空域项目 (CTAP) EIS 和波托马克综合终端雷达管制空域重新设计 EIS 也采用了这一变更阈值。FAA 在最近发布的 FAA 命令 1050.1E 中正式确定了这一变更阈值的使用。
恒定面积抛物面天线和反射镜的远场角波束宽度与发射信号的波长成正比。因此,天线或透镜的发射信号功率分布在与波长平方成正比的立体角上,即到达接收器的信号功率与频率平方成正比。对于给定的发射孔径尺寸,频率越高,到达接收器的信号功率越大。接收器噪声也会随着频率的增加而增加。在光频率下,与频率成正比的量子噪声占主导地位。在射频下,量子噪声微不足道:其他不随频率强烈变化的噪声源占主导地位。因此,首先,接收器噪声与频率成正比。由于接收信号功率与频率平方成正比,接收器信噪比 (SNR) 与频率成正比。无差错通信的最大可能速率会随着接收的 SNR 而增加。这是光通信的主要优势。迄今为止,NASA 使用的最高下行射频通信频率是深空 Ka 波段下行频率 32 千兆赫 (GHz)。典型的下行光波长为 1550 纳米 (nm),相当于 193.5 太赫兹 (THz) 的频率。因此,光与射频频率之比为 193.5 THz/32 GHz,约为 6000。在其他所有条件相同的情况下,1550 nm 光通信系统的接收器 SNR 有可能比 Ka 波段系统高 6000 倍。
摘要:串扰是量子计算设备的主要噪声源。量子计算中多条指令的并行执行会产生串扰,串扰会引起信号线间的耦合以及信号线间的互感、互容,破坏量子态,导致程序无法正确执行。克服串扰是量子纠错和大规模容错量子计算的关键前提。本文提出了一种基于多指令交换规则和持续时间的量子计算机串扰抑制方法。首先,针对量子计算设备上可执行的大多数量子门,提出一种多指令交换规则。多指令交换规则对量子电路中的量子门进行重新排序,将量子电路中串扰较大的双量子门分离。然后,根据不同量子门的持续时间插入时间赌注,在量子计算设备执行量子电路的过程中小心地分离串扰较大的量子门,以降低串扰对电路保真度的影响。多个基准实验验证了所提方法的有效性。与以前的技术相比,所提出的方法平均提高了15.97%的保真度。
高保真度的单量子比特和多量子比特操作构成了量子信息处理的基础。这种保真度基于以极其相干和精确的方式耦合单量子比特或双量子比特的能力。相干量子演化的必要条件是驱动这些跃迁的高度稳定的本振。在这里,我们研究了快速噪声(即频率远高于本振线宽的噪声)对离子阱系统中单量子比特和双量子比特门保真度的影响。我们分析并测量了快速噪声对单量子比特操作的影响,包括共振π旋转和非共振边带跃迁。我们进一步用数字方式分析了快速相位噪声对 Mølmer-Sørensen 双量子比特门的影响。我们找到了一种统一而简单的方法,通过量子比特响应频率下的噪声功率谱密度给出的单个参数来估计所有这些操作的性能。虽然我们的分析侧重于相位噪声和离子阱系统,但它也适用于其他快速噪声源以及其他量子比特系统,在这些系统中,自旋类量子比特通过共同的玻色子场耦合。我们的分析可以帮助指导量子硬件平台和门的设计,提高它们对容错量子计算的保真度。
越来越多的研究表明,功能连接组具有个体特异性,因此可以视为大脑指纹;即能够在健康 [1] 和疾病 [2], [3] 的人群中识别个体。传统的方法是将大脑区域视为顶点,将区域对之间的区域时间过程的统计依赖性成对度量(即皮尔逊相关系数)视为边权重,从而构建功能连接组 (FC)。人们已经使用不同的神经成像方式研究了 FC 的指纹潜力,即脑电图 (EEG) [4], [5]、脑磁图 (MEG) [6], [7] 和功能性磁共振成像 (fMRI) [1], [8]。所有这些研究都有助于从大脑连接数据中实现单受试者水平的推断,即通过利用不同认知任务和静息状态下功能网络组织的个体属性 [9], [10],或通过将个体连接组特征与行为和人口统计分数联系起来 [1], [6], [7], [9]。然而,传统的功能连接组不仅捕捉到了神经活动之间的统计依赖性,也捕捉到了潜在噪声源的统计依赖性。此外,功能连接组的构造仅提供大脑动态的成对表示,例如通过将大脑视为二元组的组合。由于其简单性,这一假设是有益的,但它限制了对人类大脑网络中个体特征的研究。因此,已经提出了基于主成分重建 [9] 或特征空间嵌入 [10] 的功能连接组去噪补救措施,每种方法都需要从潜在空间中学习基于空间的功能连接组。
在成像传感器中,有两种不同的噪声类别:与信号相关的噪声,这是撞击光子的函数,独立于传感器和与传感器相关的噪声。传感器噪声可以进一步分为固定的图案噪声,信号射击噪声和读取噪声。其中一些形式的噪声是时间噪声,各个时刻变化,而其他则是空间噪声,持续时间持续,但从像素到像素。可以通过传统的数据降低技术有效地减轻空间噪声,而诸如电子噪声之类的时间噪声很难有效减少。此外,CMOS传感器容易发生一种破坏性的时间噪声,称为随机电报信号噪声,也称为盐和胡椒噪声,这非常难以减轻,并且随着时间的推移而暴露于质子辐射,并且随着时间的流逝而大大增加。其他形式的噪声通常在开始时对传感器噪声概况的贡献很小的噪声也有望随着暴露而增加。本备忘录以简要讨论CMOS结构和体系结构,其中提出了负责生成噪声的主动像素CMOS传感器的特征和结构。下一节介绍了噪声的数学表示形式的简要概述。以下部分列出了CMOS噪声的分类8,并讨论了各种类型的噪声和创建它们的机制。下一节讨论了不同噪声源的综合效果。结论总结了仪器团队的主要兴趣点。以下部分Breifly介绍了辐射对噪声的影响,最后一部分涉及降低降噪技术。
合适的激光源的可用性是未来空间任务的主要挑战之一,以准确测量大气C0 2。欧洲项目的主要目标是证明在综合路径差异吸收(IPDA)激光雷达系统中,将全症状导向器激光源用作太空传播激光发射机的可行性。我们在这里提出了提议的发射器和系统体系结构,初始设备设计以及执行的模拟结果,以估算功率,光束质量和光谱属性的源需求,以实现所需的测量精度。激光发射器基于两个Ingaasp/INP单片主振荡器功率放大器(MOPAS),可提供靠近1.57 URN所选吸收系的ON和OFF波长。每个MOPA都由频率稳定的分布式反馈(DFB)主振荡器,调制器部分和优化的锥形半导体放大器组成,以最大程度地提高光学输出功率。设计符合空间的激光模块的设计包括光束形成光学元件和热电冷却器。建议的系统使用随机调制连续波(RM-CW)方法将常规的脉冲源用调制的连续波源代替,从而使设计的半导体MOPA适用于此类应用。已定义了获得1 ppmv的C0 2检索精度和少于10米的空间分辨率的系统要求。信封表明所需的平均功率是几瓦,主要噪声源是环境噪声。
考虑各种设计、运行条件和环境因素的声学效应,有效计算垂直起降场环境中的城市空中交通噪声足迹,对于在早期阶段限制噪声对社区的影响至关重要。为此,作者在 Fuerkaiti 等人 (2022) [ 11 ] 中提出了计算效率高的低保真方法,并将其扩展为计算飞机在一般 3D 环境中的噪声足迹。直射线传播器被高斯波束追踪器取代,该追踪器考虑了复杂的源方向性、3D 变化地形拓扑和风廓线。作者在之前的研究中已经验证了高斯波束追踪器的可靠性。在本文中,它进一步扩展为包括存在移动介质时的复杂源方向性。使用低保真工具链获得的噪声源存储在围绕飞机的球体上,并通过不均匀的各向异性大气传播。比较了针对不同地形拓扑结构、源方向性和风流条件预测的噪声足迹。结果表明,与平坦地形相比,对于所研究的情况,由于多次反射,建筑块在照明区域中使地面噪声水平增加了 5 dB;它们还通过在建筑物后面创建阴影区来屏蔽传入的声场。在静止的大气中,屏蔽作用随着频率的增加而增强。 变化
本论文研究了使用相控麦克风阵列检测飞机和风力涡轮机上的气动声源。推导并总结了飞机机翼和风力涡轮机叶片的流动诱导声音的特性。详细描述了相控阵技术,并讨论了该方法的几个方面,例如如何考虑流动和移动源的影响,以及如何使用源功率积分法量化阵列结果。使用开放式和封闭式风洞中的机身噪声测量来评估积分方法的可靠性。结果表明,尽管由于相干性损失,开放式喷气机中的绝对声级可能太低,但两个测试部分的相对声级在 1 dB 以内都是准确的。因此,相控阵可以在封闭式风洞中进行定量气动声学测量。接下来,应用阵列技术来表征两台现代大型风力涡轮机上的噪声源。结果表明,几乎所有发射到地面的噪声都是由叶片向下运动时叶片的外部产生的。这种不对称的声源模式会导致叶片通过时产生典型的嗖嗖噪音,这可以通过尾缘噪音指向性和对流放大来解释。测试结果令人信服地表明,宽带尾缘噪音是两种涡轮机的主要声源。基于此信息,半经验预测符合
硅自旋量子比特是用于大规模量子计算机最有希望的候选者之一,8 这得益于它们出色的相干性以及与CMOS技术的兼容性,可用于升级。先进的工业CMOS工艺流程可实现晶圆级均匀性和高器件成品率,但由于设计和操作条件不同,现成的晶体管工艺无法直接转移到量子比特结构上。因此,为了利用微电子行业的专业知识,我们定制了一条300毫米晶圆生产线,用于硅MOS量子比特集成。通过对MOS栅极堆栈进行精心优化和工程设计,我们报告了在毫开尔文温度下Si/SiOx接口上稳定均匀的量子点操作。我们提取了不同器件和各种操作条件下的电荷噪声,结果显示1 Hz时平均噪声水平低至0.61 μeV/√Hz,在某些器件和操作条件下甚至低于0.1 μeV/√Hz。通过对不同操作和设备参数下的电荷噪声进行统计分析,我们表明噪声源确实可以用两级涨落子模型很好地描述。这种可重现的低噪声水平,加上我们量子点的均匀操作,标志着 CMOS 制造的 MOS 自旋量子比特已成为成熟且高度可扩展的高保真量子比特平台。