摘要。操作员是指挥和控制系统中的主要漏洞来源之一;例如,79% 的航空致命事故归因于“人为错误”。根据 Avizienis 等人的故障分类系统,操作时的人为错误可以描述为操作员在与指挥和控制系统交互时未能提供服务。然而,之前很少有研究尝试将导致操作员处于错误模式的多种不同故障来源区分开来。本文提出了对 Avizienis 等人分类法的扩展,以便更全面地考虑人类操作员,明确导致操作员偏离正确服务交付的故障、错误状态和故障。我们的新分类法提高了对故障的理解和识别,并提供了关于可以避免或修复人为服务故障的方法的系统见解。我们提供了来自航空和其他领域的影响操作员和容错机制的故障的多个具体示例,涵盖了人机交互循环操作员侧的关键方面。
深部脑刺激 (DBS) 是一种有效的治疗方法,并为大脑疾病的动态回路结构提供了独到的见解。本综述阐述了我们目前对运动障碍病理生理学及其受 DBS 调节的潜在大脑回路的理解。它提出了帕金森病中病理网络同步模式(如 β 活动(13 – 35 Hz))的原理。我们描述了从微观尺度(包括局部突触活动)到通过调节中观尺度超同步到全脑宏观尺度连接的变化的改变。最后,展望了下一代神经技术临床创新的进展:从术前连接组靶向到反馈控制的闭环自适应 DBS 作为个体化网络特定大脑回路干预措施。
摘要量子点蜂窝自动机(QCA)代表新兴的纳米技术,该纳米技术有望取代当前的互补金属 - 氧化物 - 氧化物 - 氧化电导剂数字整合电路技术。QCA构成了一种极为有希望的无晶体管范式,可以将其降低到分子水平,从而促进TERA级设备的整合和极低的能量耗散。可逆QCA电路的可逆性从逻辑级别降低到物理水平,可以执行比Landauer能量限制(KBTLN2)耗散能量更少的计算操作。逻辑门的时间同步是必不可少的附加要求,尤其是在涉及复杂电路的情况下,以确保准确的计算结果。本文报告了逻辑和物理上可逆的时间同步QCA组合逻辑电路的八个新的设计和仿真。此处介绍的新电路设计减轻了时钟延迟问题,这些问题是由逻辑门信息的非同步,通过使用固有的更对称的电路配置引起的。模拟结果证实了提出的可逆时间同步QCA组合逻辑电路的行为,该逻辑电路表现出超大的能量耗散,并同时提供了准确的计算结果。
1 德国图宾根马克斯普朗克生物控制论研究所认知过程生理学系,2 德国图宾根大学认知和系统神经科学 IMPRS,3 法国图宾根大学、法国原子能委员会、法国国家科学研究院、巴黎萨克雷大学、NeuroSpin 中心认知神经影像学部,91191 Gif/Yvette,4 中国科学院脑科学与智能技术卓越中心 (CEBSIT) 国际灵长类脑研究中心 (ICPBR),上海 201602,5 奥地利科学技术研究所 (IST Austria),奥地利克洛斯特新堡,6 英国曼彻斯特大学生物医学成像研究所成像科学中心,7 德国图宾根马克斯普朗克智能系统研究所和 MPI-ETH 学习系统中心经验推理系
意识在大脑中如何产生对临床决策具有重要意义。我们总结了意识研究的最新发现,为临床医生提供了一个工具包,以评估意识缺陷并预测脑损伤后的结果。我们重点介绍了常见的意识障碍,然后介绍了目前用于诊断这些障碍的临床量表。我们回顾了描述丘脑皮质系统和脑干唤醒核在支持意识和唤醒方面的作用的最新证据,并讨论了各种神经影像学研究在评估意识障碍方面的效用。我们探索了意识机械模型的最新理论进展,重点关注两个主要模型,即全局神经元工作空间和整合信息理论,并回顾了有争议的领域。最后,我们考虑了最近的研究对临床神经外科医生日常决策的潜在影响,并提出了一个简单的“三振出局”模型来推断丘脑皮质系统的完整性,这可以指导预测恢复意识。
现代人类的大脑已经发展出了显着的计算能力,从而启用了更高的认知功能。这些能力与大脑皮层的大小和连通性的增加紧密相关,这被认为是由于皮质发育机制的进化变化而产生的。进化基因组学,发育生物学和神经科学方面的收敛进步最近使基因组变化成为了皮质发育的人类特异性修饰符。这些修饰符会影响皮质发生的大多数方面,从皮质神经发生的时间和复杂性到突触发生和皮质回路的组装。皮质生成的人类特异性遗传修饰剂的突变已经开始与神经发育疾病有关,提供了其生理相关性的证据,并暗示了人脑的演变与特定疾病的敏感性之间的潜在关系。
人类大脑是发育过程中最复杂的结构。揭示特定神经网络的个体发生和内在组织可能是理解不同大脑区域生理病理方面的关键。皮质-丘脑和丘脑-皮质 (CT-TC) 回路处理和调节觉醒、睡眠和记忆等基本任务,它们的改变可能导致神经发育和精神疾病。据报道,这些病理会影响特定的神经群体,但也可能广泛改变生理连接,从而导致大脑网络生成、通信和功能失调。更具体地说,据报道,CT-TC 系统在影响高级大脑功能的疾病中受到严重影响,例如精神分裂症 (SCZ)、双相情感障碍、自闭症谱系障碍或癫痫。在这篇综述中,重点将放在 CT 的发展,以及用于揭示和理解其分子和细胞机制的模型上。除了动物模型之外,我们还将讨论先进的体外平台,例如源自人类多能干细胞的脑类器官,这些模型对于揭示人类神经网络的建立仍然至关重要。事实上,类器官和组装体是研究和加速 CT 发育及其功能障碍基础研究的独特工具。然后,我们将讨论最近的前沿贡献,包括计算机模拟方法,涉及在生理和病理条件下生成连接图的 CT-TC 回路的个体发生、规范和功能。
* 通讯作者: Nicole A. Crowley,博士 Scott H. Medina,博士 助理教授 副教授 生物学系 生物医学工程系 和生物医学工程系 宾夕法尼亚州立大学 宾夕法尼亚州立大学 511 CBE 大楼 326 Mueller 实验室 宾夕法尼亚州立大学公园 16802 宾夕法尼亚州立大学公园 16802 电话:(814) 863 – 4758 电话:(814) 863 – 0278 电子邮件:shm126@psu.edu 电子邮件:nzc27@psu.edu 缩写标题:靶向 BBB 药物递送 NPPR 热门话题 总字数:600 总图片:1 总参考文献:6
在固态电解质(SSE)中使用金属有机框架(MOF)一直是一个非常有吸引力的研究领域,在现代世界中引起了广泛关注。SSE可以分为不同的类型,其中一些可以与MOF结合使用,以通过利用高表面积和高孔隙率来改善电池的电化学性能。但是,它也面临许多严重的问题和挑战。在这篇综述中,分类的不同类型的SSE类型,并描述了添加MOF后这些电解质的变化。之后,引入了这些带有MOF的SSE,以用于不同类型的电池应用,并描述了这些SSE与MOF结合在细胞电化学性能上的影响。最后,提出了MOFS材料在电池应用中面临的一些挑战,然后给出了一些解决MOF的问题和开发期望的解决方案。