正如 Edwards 等人 [1] 所记录的,LACC 以前的学生也证实,阻碍这些材料利用的一个障碍是它们倾向于分解成更稳定的 Cu 8 HL 6 一氢化物碎片,尤其是在暴露于荧光和/或酸性条件下时。然而,LACC 的学生还证实,更大的结构可以通过添加氢来再生。这一关键观察结果,即簇分解可以逆转,支持了铜氢化物簇可用作储氢材料的前提。
• 为了实现通用性,至少需要 2D 集群状态、高斯运算和一个非高斯运算。 • 为了实现容错性,需要 3D 集群状态。 • 集群状态不需要一次性生成 - 一些节点可以同时生成,而其他节点则被测量消耗。
摘要:鉴于最近人们对纳米长度尺度上的光诱导磁性操控的兴趣日益浓厚,这项工作提出金属团簇是产生全光超快磁化的有前途的基本单元。我们使用时间相关密度泛函理论(TDDFT)在实空间中通过从头算实时(RT)模拟对金属团簇的光磁特性进行了理论研究。通过对原子级精确的简单金属和贵金属团簇中圆偏振激光脉冲等离子体激发的从头算计算,我们讨论了由于光场在共振能量下通过光吸收转移角动量而产生的轨道磁矩。值得注意的是,在近场分析中,我们观察到感应电子密度的自持圆周运动,证实了纳米电流环的存在,由于团簇中的逆法拉第效应(IFE),纳米电流环产生轨道磁矩。研究结果为理解量子多体效应提供了宝贵见解,该效应影响金属团簇中 IFE 介导的光诱导轨道磁性,具体取决于金属团簇的几何形状和化学成分。同时,它们明确展示了利用金属团簇磁化的可能性,为全光磁控领域提供了潜在的应用。
天体物理环境中发生的化学反应主要受碳氧 (C/O) 比控制。这是因为一氧化碳 (CO) 键能高达 11.2 eV,使 CO 成为已知的最稳定的双原子分子 ( Luo, 2007 )。这种经典的二分法受到了挑战,因为光化学和脉动激波等非平衡过程会破坏强 CO 键并导致意想不到的分子的形成 ( Agúndez et al., 2010; Gobrecht et al., 2016 )。难熔分子和分子团簇是恒星尘埃的前身,具有特别的天文学意义。碳主导区域中的主要尘埃种类之一是碳化硅 (SiC)。在富碳演化恒星中,通常会观察到约 11.3 微米的宽光谱特征,这归因于 SiC 尘埃颗粒的存在( Friedemann,1968; Hackwell,1972; Treffers and Cohen,1974)。 SiC 星尘是从原始陨石中提取的( Bernatowicz et al.,1987; Amari et al.,1994; Hoppe et al.,1996; Zinner et al.,2007; Liu et al.,2014)。最近的研究表明,在原始陨石星尘中发现的绝大多数太阳前 SiC 颗粒源自低质量渐近巨星支 (AGB) 恒星( Cristallo et al.,2020)。但是在富碳演化恒星的恒星包层中也检测到了 SiC、Si 2 C、SiC 2 等分子气相物质( Thaddeus 等人,1984;Cernicharo 等人,1989;McCarthy 等人,2015;Massalkhi 等人,2018)。气相硅碳分子和固态 SiC 尘埃的证据表明,它们的中间体(即 SiC 分子团簇)也存在于富碳天文环境中,并参与成核和 SiC 尘埃形成过程。因此,SiC 分子团簇是我们感兴趣的对象。这项研究是先前工作的延续(Gobrecht 等人,2017),并讨论了先前研究的中性(SiC)n(n = 1–12)团簇的(单个)电离能。本文的结构如下。在第 2 节中,我们介绍了用于推导垂直和绝热电离能的方法。第 3 节展示了这些能量的结果以及绝热优化的阳离子几何形状,第 4 节给出了我们的总结和结论。
金纳米粒子通常用湿化学还原法生产,而金纳米团簇则通过团簇束沉积制备。尽管块体金是惰性的,但它在纳米晶体形式下具有催化活性。[7] 金团簇是研究最广泛的过渡金属团簇之一,因为它们在微电子、纳米技术和生物医学中有着潜在的应用。[4,8 – 10] 所谓“魔法”尺寸的金纳米粒子可以看作是规则原子晶格平面的堆叠,人们预测它们会特别稳定,尽管 Petkov 等人 [3] 指出,不应忽视失去秩序的可能性,而且金确实已被证明有形成无定形结构的趋势。[11] 值得注意的是,不对称纳米粒子的能量通常与对称的闭壳层纳米粒子相似,这增加了纳米粒子丰富的能量景观。
气体聚集是一种众所周知的现象,在自然界中通常出现在温度降低的情况下,例如云、雾或霾的形成。大气气体的原子和分子形成非常小的聚集体,称为团簇或纳米颗粒。几十年前,气相聚集原理成为在实验室条件下合成原子和分子团簇用于特定研究应用的新技术的基础[1,2]。从那时起,这项技术逐渐发展成为一种广泛使用的方法,并在20世纪90年代获得了显著的推动力,此后由于与快速发展的纳米科学和纳米技术领域的高度相关性[3-6]。目前市场上可买到的不同类型的气体聚集源与其他物理和化学纳米级合成方法相比具有许多优势,可以调整纳米颗粒参数并将其组装成功能系统,这在各种研究和工业部门中都有很高的需求[7,8]。近年来,人们开展了大量研究以改进气体聚集源以及相关团簇光束操纵系统的性能和能力[9,10]。许多研究探讨了团簇聚集的物理原理和影响其形成的关键参数,从而为控制团簇的组成、形状、大小和结构铺平了道路[11,12]。大量研究致力于将气相合成纳米粒子用作功能纳米材料和光学、催化、传感和成像、生物技术和其他领域的器件的构建块[13]。我们编写这期特刊的目的是讨论气相聚集技术的最新进展、纳米粒子合成和功能化的趋势,以及团簇光束在制备功能纳米材料或纳米级表面改性中的应用。总体而言,本书为读者提供了该领域的各种主题:从核@壳纳米粒子的形成技术到纳米粒子组装基质的应用和纳米尺度的表面改性。这种多样性表明人们对纳米粒子气体聚集和团簇束领域的兴趣是多方面的。本书以 Popok 和 Kyli án [ 14 ] 的综述开始,该综述分析了使用气相聚集法合成纳米材料的最新技术,并概述了主要应用领域,如催化、磁介质的形成、纳米粒子用于传感和检测,以及功能涂层和纳米复合材料的生产。本文从应用的角度很好地概述了不同的团簇物质相互作用机制和团簇束方法的优势。它还解决了集群技术分支的巨大发展与工业层面集群资源的稀疏使用之间的矛盾局面。Skotadis 等人的第二篇论文 [ 15 ] 也是一篇关于气相纳米粒子合成的综述,但特别关注传感技术中的应用。本文概述了基于电导率变化的传感器基质的工作原理
开发量子技术需要控制和理解多体系统中量子信息的非平衡动力学。局部信息通过创建复杂的关联(称为信息扰乱)在系统中传播,因为此过程阻止从局部测量中提取信息。在这项工作中,我们开发了一个改编自固态 NMR 方法的模型来量化信息扰乱。扰乱是通过时间反转 Loschmidt 回波 (LE) 和多重量子相干实验来测量的,这些实验本质上包含缺陷。考虑到这些缺陷,我们推导出非时间序相关器 (OTOC) 的表达式,以基于测量信息传播的活跃自旋数量来量化可观察的信息扰乱。基于 OTOC 表达式,退相干效应自然是由 LE 实验中未反转项的影响引起的。退相干会导致可测量程度的信息扰乱的局部化。这些效应定义了可观测的活跃自旋数量的局部化簇大小,从而确定了动态平衡。我们将模型的预测与使用固态 NMR 实验进行的量子模拟进行了对比,该实验测量了具有受控缺陷的时间反转回波的信息扰乱。从实验数据确定的量子信息扰乱的动态和其局部化效应之间具有极好的定量一致性。所提出的模型和派生的 OTOC 为量化大型量子系统(超过 10 4 个自旋)的量子信息动态提供了工具,与本质上包含缺陷的实验实现一致。
炎症是影响全球超过 15 亿人的严重公共卫生问题 [1]。其症状包括发热、疼痛、发红、肿胀和功能丧失 [2]。炎症与许多慢性疾病有关,例如糖尿病、癌症、心血管疾病、呼吸系统疾病和自身免疫性疾病 [3-6]。这些使人衰弱的疾病会对患者的生活质量产生重大影响 [7, 8]。抗炎药物的几种作用机制之一是抑制花生四烯酸代谢,该代谢由环氧合酶 (COX) 酶介导,特别是 COX-1 和 COX-2 [9-12]。这两种同工酶的序列几乎相同,唯一的不同之处在于 COX-1 中 523 位的异亮氨酸被 COX-2 中的缬氨酸取代 [13]。异亮氨酸比缬氨酸大,因此可以阻止体积较大的分子(容易与 COX-2 结合)进入 COX-1 的空间位阻侧结合口袋。COX-1 是一种组成酶 [14],对维持组织稳态至关重要,尤其负责产生保护胃内层的天然粘液层 [15, 16]。抑制 COX-1 的药物可能会产生不良反应,例如胃溃疡,这是由于胃中细胞保护性前列腺素的产生减少所致。相反,可诱导的 COX-2 [14] 仅在炎症细胞中表达。因此,那些选择性作用于 COX-2 的药物不会引起与 COX-1 抑制相关的副作用 [17]。传统的 NSAID 是非选择性的;也就是说,它们通过抑制 COX-1 和 COX-2 的活性起作用。较新的 NSAID,特别是所谓的“昔布类”[18-20],对 COX-2 具有显著的选择性。一般来说,市场上现有的 NSAID 具有一系列特定于特定药物的不良副作用 [21, 22]。因此,发现副作用最小或轻微的新型抗炎化合物仍然是一个活跃的研究领域。药物发现中的一种谨慎技术涉及根据已知活性化合物设计或发现新的化学结构。它需要开发作为分子特性函数的生物活性定量模型。
癌症是一个主要的全球公共卫生问题[1,2]。在2020年,这是仅次于心血管疾病的第二大死亡原因,诊断出1900万例新病例,死亡约1000万[3]。当一组异常细胞经历不受控制的分裂并通过血液和淋巴结传播以破坏附近的组织时,就会发生癌症[4]。尽管常规癌症治疗(例如化学疗法)被广泛使用,但它们缺乏肿瘤特异性,从而消除了恶性细胞和正常细胞,从而降低了存活率[5]。替代性免疫疗法由于诱导特定免疫反应的能力而收到了越来越多的利息。但是,周围的肿瘤环境配备了免疫抑制因素,可维持和促进肿瘤生长。TME可以抑制免疫细胞的功能,例如树突状细胞(DCS)的抗原呈递,从而导致肿瘤进展。此外,最近的证据表明,TME的细胞和非细胞成分促进了癌症的生长,侵袭和转移[6]。因此,TME仍然是组合疗法和免疫疗法领域的障碍[7]。幸运的是,据报道,纳米技术的不同应用比传统疗法更有可能克服TME和利用免疫系统的障碍。更具体的是,最近设计的纳米颗粒在提高癌症免疫疗法的功效方面显示出独特的特征[8]。因此,需要对癌症生物学和TME的进一步研究。这些特征包括降低副作用和促进生存率;靶向特定的肿瘤组织;针对肿瘤部位的药物递送,例如抗编程死亡1(抗PD-1);和抗原呈递细胞(APC)递送到淋巴结(例如DC)[9]。本综述提供了有关肿瘤相关免疫细胞的作用,恶性细胞与免疫系统的相互作用以及纳米颗粒在癌症疗法开发中的应用,以克服TME的挑战。
利用密度泛函理论讨论了环状三氧化铬团簇与各种气体的相互作用。研究了 n=1 至 6 的环状 (CrO 3 ) n 团簇。相互作用的气体包括 CO、H 2 、NH 3 、CH 4 和 O 2 。所有相互作用的气体都会从 CrO 3 团簇中吸收氧原子(O 2 除外),留下缺氧的团簇,而环境空气中的 O 2 会重新氧化这些团簇。CrO 3 缺氧团簇具有较低的能隙,这提高了这些团簇对相互作用气体的敏感性。讨论了相互作用的热力学,包括对吉布斯自由能、焓和反应熵的评估。反应温度的变化使用吉布斯能量值显示了反应发生的温度范围。一些气体反应是放热的还是吸热的,具体取决于焓的值。自然键轨道 (NBO) 分析显示了 CrO 3 团簇和气体中每个原子上的电荷。这些电荷解释了团簇和气体之间的反应静电。可以使用能隙和反应速率的变化来计算气体对这些气体的相对敏感度。